Kit Review – Silicon Chip Low Capacitance Meter adaptor for DMMs

Hello readers

Time again for another kit review. In the spirit of promoting all things electronic and Australian, we’re going to look at a kit that was published in our electronics magazine Silicon Chip (March 2010) – their Low-capacitance meter adaptor for DMMs. Simply put, it converts capacitance (from a theoretical 1 picofarad) to millivolts, which you can then read with almost any digital multimeter. This is useful as even more expensive multimeters (such as my Fluke 233) only measure down to 1 nanofarad (1000 picofarads). Although this kit is available on the Australian market, the retailers will export to those abroad. If you are outside Australia and having trouble sourcing one, send me an email. Moving on…

Here is our unassuming finished product:

finishedss5

Please note that this is not an open-source product, so you need to either purchase the kit of parts, or a back-issue of Silicon Chip magazine, March 2010 for the schematic and instructions. Now it is time to get started. But before that, how does it work?

Without giving too much away, a very rough explanation would be that a square wave signal is formed, then cleaned up through a Schmitt trigger-inverter. This square wave is then split into two, one signal passing through the capacitor under test and some resistors, and the other signal passing through a calibration variable capacitor and the same value resistors – thereby both signals pass through two different RC circuits. Finally the two signals are fed through a XOR gate, which creates a series of positive pulses that are a function of the capacitor under test.

Kit assembly was not that difficult, like anything just take your time, read the instructions carefully, and don’t rush things. If you are happy with your through-hole soldering skills, and have a power drill, this kit will be easy for you to work with. Unusually for some kits, this one comes with almost everything you need:

partsss3

The quality of the included housing is very good, there are metal threaded inserts for the screws; and even through the ICs are simple 74xx-series, sockets have been included. Resistors are metal film, the trimpots are enclosed multiturns – all very nice. I am a little disappointed with the housing/adhesive label combination however, in the past various kits from Jaycar would have a box with a nice silk-screened, hole-punched front panel. Such is life. The PCB is solder-masked and silk-screened, however a little less denser than PCBs from other kit suppliers:

pcbss1

And thus brings a slight issue with the housing and the PCB – either the PCB is too wide, or the box is too narrow. A quick clip of the PCB with some cutters will fix that:

filedpcbss

The instructions are quite good – they are a reprint of the magazine article, and slightly modified by the kit production company. Furthermore, the silk-screening on the PCB makes things a breeze. The simple passives were easy to install, however take care not to overheat the variable capacitor, their casings can melt rather quickly:

resiscapsss

Following that, the ICs were inserted, and the rotary switch. From experience, one should trim the shaft down to about a 25mm length before soldering it into the board. Take very good care when placing the rotary switch, there is a lump on the switch which matches the small circle at 8 o’clock on the PCB diagram. Finally, don’t forget to alter the switch so it only has four selections. Soldering it in can look difficult, but is not. Just push it into the PCB, checking it is flush, even and all the way in. Then bend a couple of the pins over, invert the PCB and solder away – as such:

solderrotaryss

Now it is time to start on the enclosure. Each end has two banana-type sockets, the left are the full binding-post, and the right are just sockets. Carefully mark where you want to start the holes – the positions are vertically half-way, and horizontally 15mm in from the edge, however double-check yourself. Always check the fit of the socket while drilling, as it is easy to go too far and make the holes too large – at which point you’ll have to buy another enclosure. Once you have the sockets fitted – on the left:

left-endss

and on the right:

right-endss

… you will need to solder the socket rear to the PCB pins (left) and a small link to the PCB pins (right). It is important to get a good, solid connection – as these sockets may come under a lot of use later on. Next it is time to start on the housing. If you can, photocopy the label so you have a drilling template:

labelsss

You will notice in the above photo one of my favourite tools, a tapered reamer. Using that, you can carefully turn a small hole into a larger hole, without risking making a mess with a drill. Again, cut the rotary switch’s shaft before soldering:

drilledboxss

And as punishment for using twitter at the same time, I had ended up drilling the back instead of the front. D’oh. However cosmetic appearance is secondary to functionality, so all is well. Next was to install the PP3 battery snap. The battery will be a tight fit, so a length of heatshrink has been supplied in order to avoid the battery case shorting with the PCB pin:

pp3snapss

And finally we have finished soldering:

donesolderingss

Now it is time for calibration. And for me to get a little cranky, which is quite rare as I am somewhat easygoing. Calibration requires three 1% tolerance capacitors, 100 pF, 1000 pF and 10000 pF. And they are not included with the kit. And can not be purchased from any of the kit retailers. So they had to be ordered from Farn… element-14 at a reasonable expense. Considering the kit production company also imports, wholesales and retails electronic components, they could have bought a volume of these special capacitors and added a few dollars to the price of the kit. Such is life. So here are the little buggers:

calibrationcapsss

From top to bottom:

  • Silvered-mica 100 picofarad 1% tolerance, element-14 # 1264880, RS # 495745;
  • Polystyrene 1000 picofarad 1% tolerance, element-14 # 9520651, RS # 495868 (silvered mica) and
  • Polystyrene 10000 picofarad 1% tolerance, element-14 # 3358951, RS # 495953 (silvered mica)

However it is worth the effort to chase them down. There is no point using this kit if you calibrate with normal capacitors; their tolerance can be as much as 20 percent either way. Thankfully the calibration process is quite simple. You will need a small, plastic flat-blade screwdriver to make the adjustments, as your body has stray energy which can alter the capacitance measurements.

Before starting, connect your multimeter to the output sockets and set the range to millivolts – then adjust the variable capacitor until you have the meter display as close to zero as possible. This is used to ‘null out’ stray capacitance. Next, set the dial to A, connect the 100 pF capacitor to the input posts, and adjust VR3 until the meter displays one volt DC – this represents 100.0 picofarads:

cal1ss

I could not for the life of me get this to 1 volt. After fitting the case at the end, I tried again with the case on with the same result. It is very important to get the capacitor as close as possible to the binding posts, with such small values stray capacitance can affect the result. However in my line of work, one-tenth of a picofarad is not relevant. For now. Next, set the dial to B, connect the 1000 pF capacitor, and adjust VR2 until the meter displays 1 volt – this represents 1000 picofarads:

cal2ss

Excellent – spot on. Unfortunately the leads on my 10000 pF capacitor were not long enough to attach into the binding posts, so that step had to be passed. I will have to re-order the correct part next week and calibrate then. However the other two setting are basically working perfectly, which is a good indication for the general performance of the kit. Kudos to Jim Rowe from Silicon Chip magazine for this design. Before closing up the enclosure, I decided to wrap the battery with some paper, as having it  rub up against other parts is not a good idea:

battpaperss

Now for a test run – time to measure the smallest capacitors I have in stock, first a 4.7 picofarad ceramic:

4p7ss

and next, a 12 picofarad ceramic:

12p0ss

Excellent, we can call these readings a success. I was also quite amazed that the tolerance of the cheap ceramic capacitors was so low. Note that in real-life, you may not be able to have the capacitor under test directly connected to the binding posts. In these cases you will need a short set of heavy-gauge leads to the test capacitor. If you do this, you will need to adjust the variable capacitor to reset the display to account for stray capacitance in the leads.

In conclusion, this kit has proved very successful, with regards to assembly, the quality of components and instructions, and of course the final result. I made a few errrors with regards to the housing, but that didn’t affect the final result. And for less than fifty Australian dollars, I have a very low value capacitance meter. However in due course I would consider the purchase of a full LCR meter for greater accuracy and ease of frequent use (some can measure down to 0.1 picofarad). But for the time being, this has been an excellent, educational  and affordable solution. You can purchase the kit directly from Jaycar. High resolution images are available on flickr.

So have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

[Note - The kit was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

The following two tabs change content below.

John Boxall

Founder, owner and managing editor of tronixstuff.com.

2 Responses to “Kit Review – Silicon Chip Low Capacitance Meter adaptor for DMMs”

  1. Casey O'Donnell says:

    good ol jaycar, although not the cheapest they certainly have a good supply of kits.

Trackbacks/Pingbacks


Leave a Reply

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: