Kit review – Protostack ATmega32 Development Kit

Introduction

For those of you prototyping with larger Atmel AVR microcontrollers such as the ATmega32, it can be inconvenient to continually assemble a circuit onto a solderless breadboard that includes power, programming header and a few basics – or you might want to create a one-off product without waiting for a PCB to be made. If these are issues for you, or you’re interested in working with AVRs  then the subject of this review may be of interest – the ATmega32 Development Kit from Protostack. The kit is one of a range that spans from the ATmega8, and gives you almost everything needed to work with the microcontroller. We’ve assembled and experimented with the ATmega32 kit, so read on to find out more.

Assembly

The kit arrives in a typical anti-static package with the contents and URL on the front:

packaging

The PCB is large, measuring 127 x 94 mm, made from heavy 1.6 mm FR4 PCB and all the holes are through-plated. And as you can see from the images below, there’s plenty of prototyping space and power/GND rails:

pcbtop

pcbbottom

The included parts allow you to add a power supply, polyfuse, smoothing capacitors for the power, programmer socket, external 16 MHz crystal, a DC socket, IC socket, a lonely LED and of course the ATmega32A (which is a lower-power version of the ATmega32):

parts

You can download the user guide from the product page, which details the board layout, schematic and so on. When soldering the parts in, just start with the smallest-profile parts first and work your way up. There’s a few clever design points, such as power regulator – there’s four holes so you can use both “in-GND-output” and “GND-output-input” types:

igo

… and the layout of the prototyping areas resemble that of a solderless breadboard, and the power/GND rails snake all around – so transferring projects won’t be difficult at all:

protoarea

If you need to connect the AVcc to Vcc, the components and board space are included for a low-pass filter:

lowpass

And if you get carried away and need to use two or more boards at once – they’re stackable:

stacking

Moving forward

After assembling the board and inserting the ATmega32, you can use an AVR programmer to check it’s all working (and of course program it). With a 10-pin interface USBASP inserted, I headed over to the AVRdude folder on my PC and entered:

which (as all was well) resulted with:

avrdudetest2

Awesome – it’s nice to have something that just works. Let the experimenting begin!

Conclusion

It’s a solid kit, the PCB is solid as a rock, and it worked. However it could really have used some spacers or small rubber feet to keep the board off the bench. Otherwise the kit is excellent, and offers a great prototyping area to work with your projects. If you order some, Protostack have a maximum delivery charge of $9 so you won’t get burned on delivery to far-flung places.  Larger photos available on flickr. And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

LEDborder

Please note that the ATMEGA32A Development Kit in this review is a promotional consideration from Protostack.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

The following two tabs change content below.

John Boxall

Founder, owner and managing editor of tronixstuff.com.

Leave a Reply

Subscribe via email

Receive notifications of new posts by email.

Arduino Tutorials

Click for Detailed Chapter Index

Chapters 0 1 2 3 4
Chapters 5 6 6a 7 8
Chapters 9 10 11 12 13
Ch. 14 - XBee
Ch. 15 - RFID - RDM-630
Ch. 15a - RFID - ID-20
Ch. 16 - Ethernet
Ch. 17 - GPS - EM406A
Ch. 18 - RGB matrix - awaiting update
Ch. 19 - GPS - MediaTek 3329
Ch. 20 - I2C bus part I
Ch. 21 - I2C bus part II
Ch. 22 - AREF pin
Ch. 23 - Touch screen
Ch. 24 - Monochrome LCD
Ch. 25 - Analog buttons
Ch. 26 - GSM - SM5100 Uno
Ch. 27 - GSM - SM5100 Mega
Ch. 28 - Colour LCD
Ch. 29 - TFT LCD - coming soon...
Ch. 30 - Arduino + twitter
Ch. 31 - Inbuilt EEPROM
Ch. 32 - Infra-red control
Ch. 33 - Control AC via SMS
Ch. 34 - SPI bus part I
Ch. 35 - Video-out
Ch. 36 - SPI bus part II
Ch. 37 - Timing with millis()
Ch. 38 - Thermal Printer
Ch. 39 - NXP SAA1064
Ch. 40 - Push wheel switches
Ch. 40a - Wheel switches II
Ch. 41 - More digital I/O
Ch. 42 - Numeric keypads
Ch. 43 - Port Manipulation - Uno
Ch. 44 - ATtiny+Arduino
Ch. 45 - Ultrasonic Sensor
Ch. 46 - Analog + buttons II
Ch. 47 - Internet-controlled relays
Ch. 48 - MSGEQ7 Spectrum Analyzer
First look - Arduino Due
Ch. 49 - KTM-S1201 LCD modules
Ch. 50 - ILI9325 colour TFT LCD modules
Ch. 51 - MC14489 LED display driver IC
Ch. 52 - NXP PCF8591 ADC/DAC IC
Ch. 53 - TI ADS1110 16-bit ADC IC
Ch. 54 - NXP PCF8563 RTC
Ch. 55 - GSM - SIM900
Ch. 56 - MAX7219 LED driver IC
Ch. 57 - TI TLC5940 LED driver IC
Ch. 58 - Serial PCF8574 LCD Backpacks
Ch. 59 - L298 Motor Control
Ch. 60 - DS1307 and DS3231 RTC part I
Arduino Yún tutorials
pcDuino tutorials

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: