Rapid stripboard prototyping made easy with Lochmaster


As a beginner in the world of electronics, sooner or later you’ll want to make a more permanent project than what can be constructed on the solderless breadboard. It’s easy to say “make your own PCBs” – however this can introduce a steep learning curve, not to mention the cost and time involved in waiting for PCBs to arrive – and hoping they’re correct. Thus for many people a happy medium is transferring prototype circuits over to stripboard – it’s really cheap (check ebay), you can keep various sizes on hand, and it’s quick.

However planning more complex circuits can be difficult – so it would be much easier with the use of a software design tool. Which brings us to the subject of our review – the Lochmaster v4.0 software from Abacom. It’s an incredibly easy to use developer’s tool for strip board projects. No more loose pieces of graph paper, soldering parts “one row too far over”, or lost design plans – you can now design stripboard projects efficiently and with ease.


Available for all versions of Windows from XP to 8, Lochmaster is less than ten megabytes and is distributed electronically after purchase – so backup your installation file when received. Otherwise it’s a quick install, you don’t need any extra framework software and due to the size will run well on less-specified machines. Although we have screen shots in the review below, you can download a trial version - so it won’t cost you anything to check it out yourself.

Designing your circuits

Once installed, opening Lochmaster for the first time you’re presented with a blank example of stripboard ready for your components:


However you can also use different types of prototyping board, such as varieties with all holes, edge connectors, mounting holes, different copper directions – or even make your own board to match a preferred style. Boar dimensions can be displayed in measurement units as well as “holes”. Then it’s a simple matter of selecting a part library from the drop-down list on the left of the window. For example, to add a 555 timer (which is an 8-pin DIL part) select the “ICs” library, click on the 8-pin enclosure and the following window appears, prompting you to fill out the appropriate details such as label, type etc:

Lochmaster 555

… then you can drop the 555 on the board. It then becomes an object which can be dragged around and placed where you need it. You can also create and modify the component libraries, and also create your own custom parts.

At that point, you might want to cut the tracks on the other side of the board. By clicking the “turn around” button the menu bar, you’re presented with the bottom of the board. Using the “add/split” button on the vertical toolbar between the library and the board, you can then virtually cut the tracks, for example:


You can also see the rounded circles which represent solder joints. After a few minutes we found dragging and dropping components onto the board very simple, and with the turn-around button you can easily flip sides until the placement looks good. After placing components, running the necessary links or wires is simple with the “draw jumper wire” tool. They can run in any direction, and also have corners, for example:

Lochmaster wires

You can also adjust the colours and thickness of the wires,  and of course can also be placed on the other side of the board – just flip it around and place the wires. After wiring things up and getting to the stage when you’re ready to build – you can test the connections to ensure you haven’t mis-counted holes or tracks. Using the “Test mode” tool you can click on tracks and the sections that are electrically connected to the point with the cursor are all highlighted – for example if you click on the point marked by the black arrow below, the connected tracks are highlighted:

lochmaster test

If you don’t like the 3D-rendered components, you can also work with normal 2D in colour or black and white:

lochmaster 2D

For final quality-control, you can also review the project at any time with “X-ray” view, which shows an outline of the parts on the other side, for example when looking at the bottom of the board, turning on X-ray results with:

Lochmaster xray

You can also generate component lists, which are great for documentation or simply making up a shopping list. It can be exported to .xls or text file, for example:

lochmaster list

And then you can export your project as an image (.jpg or .bmp), HPGL machine file – and print out both sides to serve as an assembly guide. There is also standalone file-viewer software, so you can share your designs with others who haven’t got the full Lochmaster software installed.

Example project

After experimenting with Lochmaster for a short while, we decided to test using it with a real project that a beginner might assemble. For example, a square wave oscillator from an old Talking Electronics magazine (click image for larger version):

square wave oscillator

Nothing too complex, but a useful tool for anyone experimenting with electronics. It’s a 555 astable with six different RC values which allows you to select from 1, 10, 100, 1 k, 10 k and 100 kHz outputs. The first step is to gather all the components together, so you know the widths and number of holes each needs on the stripboard:


The next step is to measure the board, as you can enter the dimensions via Board>Edit board layout… into Lochmaster to avoid having excess space in the design plan. Then after consulting the schematic and the single-layer PCB layout from the magazine, it’s a simple matter of placing the parts onto the virtual board after checking how the fit in on the real thing:

osciillator top

… and the flip-side:

oscillator bottom

Not a work of art – but it works.  (We didn’t fit the 100 kHz setting, as the capacitor wasn’t in stock). And that’s the neat thing – you can experiment with placement until you’re happy, then double-check connections before soldering. You might find even after some planning, that you may deviate from the plan. Fair enough, but just double-check what you’re doing. And a short while later, the results, top and bottom:

oscillator PCB top

oscillator PCB bottom


If you’re a beginner and don’t have the time, money and patience to design your own PCBs – Lochmaster is ideal. It’s a neater way to visualise physical circuits, as well as filing and sharing them with others.   To order your own copy, get the trial version, or if you have any questions please contact Abacom. Full-sized images of the screen-shots can be found on flickr. And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

[Note - Lochmaster software license was a promotional consideration from Abacom]

The following two tabs change content below.

John Boxall

Founder, owner and managing editor of tronixstuff.com.

One Response to “Rapid stripboard prototyping made easy with Lochmaster”

  1. John Smith says:

    Hi John
    Nice review, I use Sprint Layout ( from the same vendor, same price ) for designing stripboard by drawing horizontal tracks, which can be split where you want to drill a hole.
    The advantage is that you can also use it for real pcb layout as well.
    The components dont have pretty shading, just the basic outline, but it works well.


Leave a Reply

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: