Archive | beginnner

Tutorial – Arduino and PCF8591 ADC DAC IC

Learn how to use the NXP PCF 8591 8-bit A/D and D/A IC with Arduino in chapter fifty-two of my Arduino Tutorials. The first chapter is here, the complete series is detailed here.

Updated 17/06/2013

Introduction

Have you ever wanted more analogue input pins on your Arduino project, but not wanted to fork out for a Mega? Or would you like to generate analogue signals? Then check out the subject of our tutorial – the NXP PCF8591 IC. It solves both these problems as it has a single DAC (digital to analogue) converter as well as four ADCs (analogue to digital converters) – all accessible via the I2C bus. If the I2C bus is new to you, please familiarise yourself with the readings here before moving forward.

The PCF8591 is available in DIP form, which makes it easy to experiment with:

pcf8591

You can get them from the usual retailers. Before moving on, download the data sheet. The PCF8591 can operate on both 5V and 3.3V so if you’re using an Arduino Due, Raspberry Pi or other 3.3 V development board you’re fine. Now we’ll first explain the DAC, then the ADCs.

Using the DAC (digital-to-analogue converter)

The DAC on the PCF8591 has a resolution of 8-bits – so it can generate a theoretical signal of between zero volts and the reference voltage (Vref) in 255 steps. For demonstration purposes we’ll use a Vref of 5V, and you can use a lower Vref such as 3.3V or whatever you wish the maximum value to be … however it must be less than the supply voltage. Note that when there is a load on the analogue output (a real-world situation), the maximum output voltage will drop – the data sheet (which you downloaded) shows a 10% drop for a 10kΩ load. Now for our demonstration circuit:

pcf8591basic_schem

Note the use of 10kΩ pull-up resistors on the I2C bus, and the 10μF capacitor between 5V and GND. The I2C bus address is set by a combination of pins A0~A2, and with them all to GND the address is 0x90. The analogue output can be taken from pin 15 (and there’s a seperate analogue GND on pin 13. Also, connect pin 13 to GND, and circuit GND to Arduino GND.

To control the DAC we need to send two bytes of data. The first is the control byte, which simply activates the DAC and is 1000000 (or 0x40) and the next byte is the value between 0 and 255 (the output level). This is demonstrated in the following sketch:

Did you notice the bit shift of the bus address in the #define statement? Arduino sends 7-bit addresses but the PCF8591 wants an 8-bit, so we shift the byte over by one bit. 

The results of the sketch are shown below, we’ve connected the Vref to 5V and the oscilloscope probe and GND to the analogue output and GND respectively:

triangle

If you like curves you can generate sine waves with the sketch below. It uses a lookup table in an array which contains the necessary pre-calculated data points:

And the results:

sine

For the following DSO image dump, we changed the Vref to 3.3V – note the change in the maxima on the sine wave:

sine3v3

Now you can experiment with the DAC to make sound effects, signals or control other analogue circuits.

Using the ADCs (analogue-to-digital converters)

If you’ve used the analogRead() function on your Arduino (way back in Chapter One) then you’re already familiar with an ADC. With out PCF8591 we can read a voltage between zero and the Vref and it will return a value of between zero and 255 which is directly proportional to zero and the Vref. For example, measuring 3.3V should return 168. The resolution (8-bit) of the ADC is lower than the onboard Arduino (10-bit) however the PCF8591 can do something the Arduino’s ADC cannot. But we’ll get to that in a moment.

First, to simply read the values of each ADC pin we send a control byte to tell the PCF8591 which ADC we want to read. For ADCs zero to three the control byte is 0x00, 0x01, ox02 and 0x03 respectively. Then we ask for two bytes of data back from the ADC, and store the second byte for use. Why two bytes? The PCF8591 returns the previously measured value first – then the current byte. (See Figure 8 in the data sheet). Finally, if you’re not using all the ADC pins, connect the unused ones to GND.

The following example sketch simply retrieves values from each ADC pin one at a time, then displays them in the serial monitor:

Upon running the sketch you’ll be presented with the values of each ADC in the serial monitor. Although it was a simple demonstration to show you how to individually read each ADC, it is a cumbersome method of getting more than one byte at a time from a particular ADC.

To do this, change the control byte to request auto-increment, which is done by setting bit 2 of the control byte to 1. So to start from ADC0 we use a new control byte of binary 00000100 or hexadecimal 0x04. Then request five bytes of data (once again we ignore the first byte) which will cause the PCF8591 to return all values in one chain of bytes. This process is demonstrated in the following sketch:

Previously we mentioned that the PCF8591 can do something that the Arduino’s ADC cannot, and this is offer a differential ADC. As opposed to the Arduino’s single-ended (i.e. it returns the difference between the positive signal voltage and GND, the differential ADC accepts two signals (that don’t necessarily have to be referenced to ground), and returns the difference between the two signals. This can be convenient for measuring small changes in voltages for load cells and so on.

Setting up the PCF8591 for differential ADC is a simple matter of changing the control byte. If you turn to page seven of the data sheet, then consider the different types of analogue input programming. Previously we used mode ’00’ for four inputs, however you can select the others which are clearly illustrated, for example:

adcmodes

So to set the control byte for two differential inputs, use binary 00110000 or 0x30. Then it’s a simple matter of requesting the bytes of data and working with them. As you can see there’s also combination single/differential and a complex three-differential input. However we’ll leave them for the time being.

Conclusion

Hopefully you found this of interest, whether adding a DAC to your experiments or learning a bit more about ADCs. We’ll have some more analogue to digital articles coming up soon, so stay tuned. And if you enjoy my tutorials, or want to introduce someone else to the interesting world of Arduino – check out my new book “Arduino Workshop” from No Starch Press.

LEDborder

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in ADC, arduino, beginnner, dac, differential, education, electronics, I2C, lesson, NXP, PCF8591, tronixstuff, tutorial14 Comments

Review: Gooligum Electronics PIC Training Course and Development Board

Introduction

[Updated 18/06/2013]

There are many types of microcontrollers on the market, and it would be fair to say one of the two most popular types is the Microchip PIC series. The PICs are great as there is a huge range of microcontrollers available across a broad range of prices. However learning how to get started with the PIC platform isn’t exactly simple. Not that we expect it to be, however a soft start is always better. There are some older books, however they can cost more than $100 – and are generally outdated. So where do you start?

It is with this problem in mind that led fellow Australian David Meiklejohn to develop and offer his PIC Training Course and Development Board to the marketplace via his company Gooligum Electronics.

In his words:

There is plenty of material available on PICs, which can make it daunting to get started.  And some of the available material is dated, originally developed before modern “flash” PICs were available, or based on older devices that are no longer the best choice for new designs.  Our approach is to introduce PIC programming and design in easy stages, based on a solid grounding in theory, creating a set of building blocks and techniques and giving you the confidence to draw on as we move up to more complex designs.

So in this article we’ll examine David’s course package. First of all, let’s look at the development board and inclusions. Almost everything you will need to complete all the lessons is included in the package, including the following PIC microcontrollers:

You can choose to purchase the board in kit form or pre-assembled. If you enjoy soldering, save the money and get the kit – it’s simple to assemble and a nice way to spend a few hours with a soldering iron.

Although the board includes all the electronic components and PICs – you will need are a computer capable of running Microchip MPLAB software, a Microchip PICkit3 (or -2) programming device and an IC extractor. If you’re building the kit, a typical soldering iron and so on will be required. Being the  ultra-paranoid type, I bought a couple extra of each PIC to have as spares, however none were damaged in my experimenting. Just use common-sense when handling the PICs and you will be fine.

Assembly

Putting the kit board together wasn’t difficult at all. There isn’t any surface-mount parts to worry about, and the PCB is silk-screened very well:

barepcbss

The rest of the parts are shipped in antistatic bags, appropriately labelled and protected:

allthebitsss

Assembly was straight forward, just start with the low-profile parts and work your way up. The assembly guide is useful to help with component placement. After working at a normal pace, it was ready in just over an hour:

finishedboardss

The Hardware

Once assembled (or you’ve opened the packaging) the various sections of the board are obvious and clearly labelled – as they should be for an educational board. You will notice a large amount of jumper headers – they are required to bridge in and out various LEDs, select various input methods and so on. A large amount of jumper shunts is included with the board.

It might appear a little disconcerting at first, but all is revealed and explained as you progress through the lessons. The board has decent rubber feet, and is powered either by the PICkit3 programmer, or a regulated DC power source between 5 and 6V DC, such as from a plug-pack if you want to operate your board away from a PC.

However there is a wide range of functions, input and output devices on the board – and an adjustable oscillator, as shown in the following diagram:

boardlayoutonceassembledss

The Lessons

There is some assumed knowledge, which is a reasonable understanding of basic electronics, some computer and mathematical savvy and the C programming language.

You can view the first group of lessons for free on the kit website, and these are included along with the additional lessons in the included CDROM. They’re in .pdf format and easy to read. The CDROM also includes all the code so you don’t have to transcribe it from the lessons. Students start with an absolute introduction to the system, and first learn how to program in assembly language in the first group of tutorials, followed by C in the second set.

This is great as you learn about the microcontroller itself, and basically start from the bottom. Although it’s no secret I enjoy using the Arduino system – it really does hide a lot of the actual hardware knowledge away from the end user which won’t be learned. With David’s system – you will learn.

If you scroll down to the bottom of this page, you can review the tutorial summaries. Finally here’s a quick demonstration of the 7-segment displays in action:

Update – 18/06/2013

David has continued publishing more tutorials for his customers every few months – including such topics as the EEPROM and pulse-width modulation. As part of the expanded lessons you can also get a pack which allows experimenting with electric motors that includes a small DC motor, the TI SN75441 h-bridge IC, N-channel and P-channel MOSFETS and more:

motorkit

So after the initial purchase, you won’t be left on your own. Kudos to David for continuing to support and develop more material for his customers.

Where to from here? 

Once you run through all the tutorials, and feel confident with your knowledge, the world of Microchip PIC will be open to you. Plus you now have a great development board for prototyping with 6 to 14-pin PIC microcontrollers. Don’t forget all the pins are brought out to the row of sockets next to the solderless breadboard, so general prototyping is a breeze.

Conclusion

For those who have mastered basic electronics, and have some C or C-like programming experience from using other development environments or PCs – this package is perfect for getting started with the Microchip PIC environment. Plus you’ll learn about assembly language – which is a good thing. I genuinely recommend this to anyone who wants to learn about PIC and/or move into more advanced microcontroller work. And as the entire package is cheaper than some books –  you can’t go wrong. The training course is available directly from the Gooligum website.

Disclaimer – The Baseline and Mid-Range PIC Training Course and Development Board was a promotional consideration from Gooligum Electronics.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in beginnner, kit review, lesson, microchip, microcontrollers, pic, PIC10F200, PIC12F509, PIC12F629, PIC16F506, PIC16F684, pickit, tutorial6 Comments

Tutorial – Arduino and EM406A GPS

Learn how to use GPS and Arduino in chapter seventeen of a series originally titled “Getting Started with Arduino!” by John Boxall – A tutorial on the Arduino universe. The first chapter is here, the complete series is detailed here. If you have a MediaTek 3329 GPS module, please visit the separate tutorial.

Updated 14/01/2014

In this instalment we will introduce and examine the use of the Global Positioning System receivers with Arduino systems. What is the GPS? In very simple terms, a fleet of satellites orbit the earth, transmitting signals from space. Your GPS receiver uses signals from these satellites to triangulate position, altitude, compass headings, etc.; and also receives a time and date signal from these satellites. The most popular GPS belongs to the USA, and was originally for military use – however it is now available for users in the free world.

Interestingly, the US can switch off or reduce accuracy of their GPS in various regions if necessary, however many people tell me this is not an issue unless you’re in a combat zone against the US forces. For more information, have a look at Wikipedia or the USAF Space Command GPS Ops Centre site. As expected,  other countries have their own GPS as well – such as Russia, China, and the EU is working on one as well.

So – how can us mere mortals take advantage of a multi-billion dollar space navigation system just with our simple Arduino? Easy – with an inexpensive GPS receiver and shield. When searching for some hardware to use, I took the easy way out and ordered this retail GPS packwhich includes the required Arduino shield and header sockets, short connecting cable and an EM-406A 20-channel GPS receiver with in-built antenna:

packcontentsss

For reference now and in the future, here is the data book for the GPS receiver: EM-406 manual.pdf. All you will need is an Arduino Uno or 100% compatible board, and the usual odds and ends. When it comes time to solder up your shield, if possible try and sit it into another shield or board – this keeps the pins in line and saves a lot of trouble later on:

howtosolderss

And we’re done:

readyfor-workss

Please notice in the photo above the cable is a lot longer between the shield and the GPS receiver. This was an extra cable, which makes things a lot more convenient, and it never hurts to have a spare. Finally, on the shield please take note of the following  two switches – the shield/GPS power switch:

shieldonoffss

and the UART/DLINE switch:

uartdliness

For now, leave this set to UART while a sketch is running. When uploading a sketch to the board, this needs to be on DLINE. Always turn off your GPS shield board before changing  this switch to avoid damage.

Is anyone out there?

Now, let’s get some of that juicy GPS data from outer space. You will need:

Once you have your hardware assembled, upload the following sketch:

Now for desk jockeys such as myself, there is a catch – as a GPS receives signals from satellites the receiver will need to be in line of sight with the open sky. If you have your desk next to a window, or a portable computer you’re in luck.  Look at the LED on your GPS receiver – if it is blinking, it has a lock (this is what you want); on – it is searching for satellites; off – it is off (!). The first time you power up your receiver, it may take a  minute or so to lock onto the available satellites, this period of time is the cold start time.

This will be in ideal conditions – i.e. with a clear line of sight from the unit to the sky (clouds excepted!). Once this has been done, the next time you power it up, the searching time is reduced somewhat as our receiver stores some energy in a supercap (very high-value capacitor) to remember the satellite data, which it will use the next time to reduce the search time (as it already has a “fair idea” where the satellites are). Now open the serial monitor box, sit back and wait a moment or two, and you should be presented with something very similar to this:

example17p1data

What a mess. What on earth does all that mean? For one thing the hardware is working correctly. Excellent! Now how do we decode these space-signals… They are called NMEA codes. Let’s break down one and see what it means. For example, the line: $GPRMC,165307.000,A,2728.9620,S,15259.5159,E,0.20,48.84,140910,,*27 Each field represents:

  • $GPRMC tells us the following data is essential point-velocity-time data;
  • 165307.000 is the universal time constant (Greenwich Mean Time) – 16:53:07 (hours, minutes, seconds). So you now have a clock as well.
  • A is status – A for active and data is valid, V for void and data is not valid.
  • 2728.9620 is degrees latitude position data = 27 degrees, 28.962′
  • S for south (south is negative, north is positive)
  • 15259.5159 is degrees longitude position data = 152 degrees, 59.5159′
  • E for east (east is positive, west is negative)
  • 0.20 is my speed in knots over ground. This shows the inaccuracy  that can be caused by not having a clear view of the sky
  • 48.84 – course over ground (0 is north, 180 is south, 270 is west, 90 is east)
  • 140910 is the date – 14th September, 2010
  • the next is magnetic variation for which we don’t have a value
  • checksum number

Thankfully the data is separated by commas. This will be useful if you are logging the data to a text file using a microSD shield, you will then be able to use the data in a spreadsheet very easily. Later on we will work with data from other codes, but if you can’t wait, here is the NMEA Reference Manual that explains them all. In the meanwhile, how can we convert the location data (longitude and latitude) received into a position on a map?

  • Visit this website
  • In the box that says “paste your data here”, enter (for example, using my data above)

For example:

visualiser

Then click “Draw the Map”, and you will be presented with a Google map in a new window that you can zoom around in, change views and so on. Interestingly enough the coordinates returned in the test above were accurate down to around three meters. Later on that website will be of great use, as you can import text files of coordinates, and it will plot them out for you. If you use this mapping site a lot, please consider making a donation to help them out. Now as always, there is an easier way. The purpose of the previous demonstrations were to see the raw data that comes from a receiver, and understand how to work with it.

gps_satellite_nasa_art-iif

Moving on… now we can receive GPS signals – and in the past we have used LCD modules – so we can make our own variations of portable (!) GPS modules and other devices. At this point you will need to install another Arduino library – TinyGPSSo download and install that before moving forward.

“My First GPS”

Using various pieces of hardware from the past, we will build a simple, portable unit to display our data.

You will need:

  • Arduino Uno or compatible board
  • a suitable GPS setup – for example the GPS shield bundle
  • An LCD with HD44780 interface that has the ability to connect to your Arduino system. The size is up to you, we’re using a 20 x 4 character unit. If you have dropped in or are a bit rusty on LCDs, please read chapter twenty-four;
  • An external power supply for your setup (if you want to walk up and down the street at midnight like I did) – for example, a 9V battery snap soldered to a DC plug is a quick and dirty solution!

Luckily I have made an LCD shield in the past which works nicely, and doesn’t use digital pins D0 and D1 – these are used by the GPS shield to get the data back to the Arduino. Therefore the whole lot just plugged in together as shields do. Here is the sketch for your consideration:

Before uploading the sketch, turn off the GPS shield, set the DLINE/UART switch on the GPS shield to DLINE, upload the sketch, then set it back again, then back on with the GPS shield. So here it is all thrown together in my lunch box:

exam17p2boxss

And a close-up view of the LCD. There was not room for the course data, but you can modify the sketch accordingly. The data will be a little off due to the photo being taken indoors:

exam17p2lcdss

Now for some outdoor fun. In the video clip below, we take a ride on the bus and see our GPS in action. I had to take an old bus that wasn’t full of security cameras, so the ride is bumpy:

sl250ss

As we have a lot of electronics in this setup, it would be interesting to know the current draw – to help plan for an appropriate power supply. The trusty meter gives us:

exam17p2currentss

Wow – a maximum of 122 milliamps even with that LCD backlight blazing away. So when we make some GPS logging devices without such a monstrous LCD, we should be able to get the current draw down a lot more. The purpose of this example was to show how you can manipulate the data from the GPS receiver.

“Household official time”

At home we often have various discussions about what the actual time is. At first it sounds silly, but when you have clocks on the microwave, kitchen wall, a wristwatch, mobile phone, clock-radio, and so on – things can get a little out of hand. And my better half has all her clocks ten minutes fast. Insanity may prevail! So let’s make a nice big LED-display reference clock – something that wouldn’t look out of place in a radio or television studio:

Then when people start arguing over the time, you can point at your new clock and smile. From a hardware perspective, we will combine three or four things: our Arduino board, our GPS system, and the MAX7219 display driver. We will need the following items:

  • Arduino Uno or compatible board
  • the GPS shield bundle
  • Maxim MAX7219 display driver IC
  • two four-digit, seven-segment LED displays (common cathode). You could also rig up four separate digits with some patience;
  • one 1 kilo ohm resistor
  • one 10 kilo ohm resistor
  • one single pole, double-throw switch
  • a nice breadboard and some connecting wire
  • a separate 5V power supply – all those LED segments are thirsty, the completed clock uses under 350 milliamps with a brightness setting of 8:

 

Here is the schematic:

And the sketch:

Although the sketch may seem quite complex, it is just made up of things we have already examined in the past. The only unfamiliar part could be the MAX7219 display driver IC, which in itself is quite easy to use. There is a full part review and explanation here. It is most likely that everyone will have different LED display units, as the 4-digit modules can be hard to track for some people or too expensive –  so some more explanation is in order.

You will need common-cathode display modules. If you line the digits up from left to right, they will be numbered zero to nine with respect to the MAX7219 – so connect MAX7219 pin 2 to the cathode of your first display, and so on. With regards to the anodes (a~g and dp [decimal point]) – link each anode type together.

For example, if you have eight separate 7-segment display modules, connect each ‘a’ pin together, then to MAX pin 14. And so on. Here is the board layout – a real mess:

And our action video:

An interesting twist you might find of interest is the function:


Which allows you to alter the brightness of the LED display(s). The range is 0 to 18 – in my examples it has been set to 8. You could then make your clock dim the display brightness between (for example) 11pm and 5am – so when you wake up in the middle of the night the display won’t act like a frickin’  laser-beam burning into your eyeballs. Furthermore, dropping the brightness reduces the power consumption.

”You went… where?”

Now it is time for what most of you have been waiting for – making a GPS tracking device. Now before you get too excited, it would be proper to make sure you have the permission of someone before you track them. From a hardware perspective this example is a lot easier that you think – it is just the Arduino board, GPS shield and microSD shield. You will need to install TinyGPS library if not already installed.

Then, we will need the following items:

  • Arduino Uno or compatible board
  • the GPS shield bundle
  • microSD shield and a matching memory card up to 2GB in size
  • portable power, for example an alkaline 9V PP3 battery and adaptor cable

And here is the sketch:

Don’t forget to format the microSD card to FAT16 before use. Once power is applied, the system will take a position reading and write it to the microSD card every 30 seconds. You can alter this period by changing the value in the delay() function at the end of  void getgps(TinyGPS &gps). The text file is closed after every write, so you can just turn it off when finished then take the memory card to the computer to copy the data.

Although the hardware wasn’t that interesting to plug together, what can be done with it and the data it captures is quite fascinating. To generate some sample data, I have taken the hardware for a walk to the post office. We will now open the file produced by our hardware and examine it further. If you would like to follow along, you can download the file from here.

The file is a typical, comma-delimited text file. You can examine it further using common spreadsheet software such as LibreOffice Calc. For example, if you open the file of GPS data from here, you will be presented with the following window:

You can see that the data delimits quite easily. Just click “OK” and the file will be presented to you.

So as you can see, there is time, date (remember – GMT), latitude and longitude, my speed (with a couple of anomalies) and random sensor data results (see the sketch). We can have this data converted into a much more useful form by using the GPS Visualiser website. Save the data as a .csv file. Then visit http://www.gpsvisualizer.com/, and use the Get Started Now box in the middle of the web page. SelectGoogle Maps as the output format, then upload the file. This will result in the following:

Just like normal Google Maps there are many display options you can choose from, and the GPS Visualiser web site has many tutorials about making the most of their service. If you look in detail you will see some “jittering” along parts of the track that are not representative of my movements (though I had just taken my morning coffee). This could be the result of the receiver module moving about in all three axes during my walk, one would imagine it would be a lot smoother inside a motor vehicle. So have fun with that.

LEDborder

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, beginnner, education, GPS, GPS-09123, learning electronics, lesson, microcontrollers, RTL-10709, tutorial13 Comments


Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: