Control your Arduino over the Internet using Blynk

Introduction

There are many ways of remotely-controlling your Arduino or compatible hardware over the Internet. Some are more complex than others, which can be a good thing or a bad thing depending on your level of expertise. Lately we’ve become more interested in this topic and have come across Blynk, which appeared to be a simple solution – and thus the topic of our review.

What is Blynk?

From their website: “Blynk is a Platform with iOS and Android apps to control Arduino, Raspberry Pi and the likes over the Internet. It’s a digital dashboard where you can build a graphic interface for your project by simply dragging and dropping widgets. 

It’s really simple to set everything up and you’ll start tinkering in less than 5 mins. Blynk is not tied to some specific board or shield. Instead, it’s supporting hardware of your choice. Whether your Arduino or Raspberry Pi is linked to the Internet over Wi-Fi, Ethernet or this new ESP8266 chip, Blynk will get you online and ready for the Internet Of Your Things.” Here is the original launch video:

 

Blynk started off as an idea, and raised initial funding through Kickstarter – which was successful and the system has now launched. Blynk comprises of an app on your smartphone (Android or iOS) inside which you can add widgets (controls) to send commands back to your development board (Arduino etc.).

For example, you can add a switch to turn a digital output on or off. Furthermore, data from sensors connected to the development board can be send back to the smartphone. The data passes through the Blynk Cloud server, or you can download and run your own server on your own hardware and infrastructure.

How much does it cost?

Right now (September 2015) the Blynk system is free. We downloaded the app and experimented without charge. We believe that over time there will be payment required for various functions, however you can try it out now to see if Blynk suits your needs then run with it later or experiment with other platforms.

Getting Started

Well enough talk, let’s try Blynk out. Our hardware is an Android smartphone (the awesome new Oppo R7+) for control, and a Freetronics EtherTen connected to our office modem/router:

blynk etherten tronixstuff

You can also use other Arduino+Ethernet combinations, such as an Arduino Uno with an Ethernet shield. First you need to download the app for your phone – click here for the links. Then from the same page, download the Arduino library – and install it like you would any other Arduino library.

For our first example, we’ll use an LED connected to digital pin 7 (via a 560 ohm resistor) shown above. Now it’s time to set up the Blynk app. When you run the app for the first time, you need to sign in – so enter an email address and password:

blynk tronixstuff 1

Then click the “+” at the top-right of the display to create a new project, and you should see the following screen:

blynk tronixstuff 2

You can name your project, select the target hardware (Arduino Uno) – then click “E-mail” to send that auth token to yourself – you will need it in a moment. Then click “Create” to enter the main app design screen. Next, press “+” again to get the “Widget Box” menu as shown below, then press “Button”:

blynk tronixstuff 3

This will place a simple button on your screen:

blynk tronixstuff 4

Press the button to open its’ settings menu:

blynk tronixstuff 5

From this screen you can name your button, and also determine whether it will be “momentary” (i.e., only on when you press the button) – or operate as a switch (push on… push off…). Furthermore you need to select which physical Arduino pin the button will control – so press “PIN”, which brings up the scrolling menu as shown below:

blynk tronixstuff 6

We set ours to D7 then pressed “Continue”. Now the app is complete. Now head back to your computer, open the Arduino IDE, and load the “Arduino_Ethernet” sketch included with the library:

blynk example sketch tronixstuff

Then scroll down to line 30 and enter the auth key that was sent to you via email:

blynk example sketch tronixstuff auth key

Save then upload the sketch to your Arduino. Now head back to your smartphone, and click the “Play” (looks like a triangle pointing right) button. After a moment the app will connect to the Blynk server… the Arduino will also be connected to the server – and you can press the button on the screen to control the LED.

And that’s it – remote control really is that easy. We’ve run through the process in the following short video:

Now what else can we control? How about some IKEA LED strips from our last article. Easy… that consisted of three digital outputs, with PWM. The app resembles the following:

blynk tronixstuff ikea dioder

… and watch the video below to see it in action:

Monitoring data from an Arduino via Blynk

Data can also travel in the other direction – from your Arduino over the Internet to your smartphone. At the time of writing this (September 2015) you can monitor the status of analogue and digital pins, and widgets can be added in the app to do just that. They can display the value returned from each ADC, which falls between zero and 1023 – and display the values in various forms – for example:

blynk sensors tronixstuff

The bandwidth required for this is just under 2 K/s, as you can see from the top of the image above. You can see this in action through the video below:

Conclusion

We have only scratched the surface of what is possible with Blynk – which is an impressive, approachable and usable “Internet of Things” platform. Considering that you can get an inexpensive Android smartphone or tablet for under AU$50, the overall cost of using Blynk is excellent and well worth consideration, even just to test out the “Internet of Things” buzz yourself. So to get started head over to the Blynk site.

And finally a plug for our own store – tronixlabs.com – which along with being Australia’s #1 Adafruit distributor, also offers a growing range and Australia’s best value for supported hobbyist electronics from DFRobot, Freetronics, Seeedstudio and much much more.

visit tronixlabs.com

As always, have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website.

Posted in arduino, blynk, Ikea, iot, tronixlabs, tronixstuff, tutorial7 Comments

Arduino Tutorials – Chapter 16 – Ethernet

Learn how to connect your Arduino to the outside world via Ethernet

This is chapter sixteen of our huge Arduino tutorial seriesUpdated 06/12/2013

In this chapter we will introduce and examine the use of Ethernet networking with Arduino over local networks and the greater Internet. It will be assumed that you have a basic understanding of computer networking, such as the knowledge of how to connect computers to a hub/router with RJ45 cables, what an IP and MAC address is, and so on. Furthermore, here is a good quick rundown about Ethernet.

Getting Started

You will need an Arduino Uno or compatible board with an Ethernet shield that uses the W5100 Ethernet controller IC (pretty much all of them):

Arduino Ethernet shield

…or consider using a Freetronics EtherTen – as it has everything all on the one board, plus some extras:

Freetronics EtherTen

Furthermore you will need to power the board via the external DC socket – the W5100 IC uses more current than the USB power can supply. A 9V 1A plug pack/wall wart will suffice. Finally it does get hot – so be careful not to touch the W5100 after extended use. In case you’re not sure – this is the W5100 IC:

Wiznet W5100

Once you have your Ethernet-enabled Arduino, and have the external power connected – it’s a good idea to check it all works. Open the Arduino IDE and selectFile > Examples > Ethernet > Webserver. This loads a simple sketch which will display data gathered from the analogue inputs on a web browser. However don’t upload it yet, it needs a slight modification.

You need to specify the IP address of the Ethernet shield – which is done inside the sketch. This is simple, go to the line:

And alter it to match your own setup. For example, in my home the router’s IP address is 10.1.1.1, the printer is 10.1.1.50 and all PCs are below …50. So I will set my shield IP to 10.1.1.77 by altering the line to:


You also have the opportunity to change your MAC address. Each piece of networking equipment has a unique serial number to identify itself over a network, and this is normall hard-programmed into the equipments’ firmware. However with Arduino we can define the MAC address ourselves.

If you are running more than one Ethernet shield on your network, ensure they have different MAC addresses by altering the hexadecimal values in the line:


However if you only have one shield just leave it be. There may be the very, very, statistically rare chance of having a MAC address the same as your existing hardware, so that would be another time to change it.

Once you have made your alterations, save and upload the sketch. Now open a web browser and navigate to the IP address you entered in the sketch, and you should be presented with something similar to the following:

 Arduino webserver example sketch

What’s happening? The Arduino has been programmed to offer a simple web page with the values measured by the analogue inputs. You can refresh the browser to get updated values.

At this point – please note that the Ethernet shields use digital pins 10~13, so you can’t use those for anything else. Some Arduino Ethernet shields may also have a microSD card socket, which also uses another digital pin – so check with the documentation to find out which one.

Nevertheless, now that we can see the Ethernet shield is working we can move on to something more useful. Let’s dissect the previous example in a simple way, and see how we can distribute and display more interesting data over the network. For reference, all of the Ethernet-related functions are handled by the Ethernet Arduino library. If you examine the previous sketch we just used, the section that will be of interest is:

Hopefully this section of the sketch should be familiar – remember how we have used serial.print(); in the past when sending data to the serial monitor box? Well now we can do the same thing, but sending data from our Ethernet shield back to a web browser – on other words, a very basic type of web page.

However there is something you may or may not want to  learn in order to format the output in a readable format – HTML code. I am not a website developer (!) so will not delve into HTML too much.

However if you wish to serve up nicely formatted web pages with your Arduino and so on, here would be a good start. In the interests of simplicity, the following two functions will be the most useful:


Client.print (); allows us to send text or data back to the web page. It works in the same way as serial.print(), so nothing new there. You can also specify the data type in the same way as with serial.print(). Naturally you can also use it to send data back as well. The other useful line is:


which sends the HTML code back to the web browser telling it to start a new line. The part that actually causes the carriage return/new line is the <br /> which is an HTML code (or “tag”) for a new line. So if you are creating more elaborate web page displays, you can just insert other HTML tags in the client.print(); statement. If you want to learn more about HTML commands, here’s a good tutorial site. Finally – note that the sketch will only send the data when it has been requested, that is when it has received a request from the web browser.

Accessing your Arduino over the Internet

So far – so good. But what if you want to access your Arduino from outside the local network?

You will need a static IP address – that is, the IP address your internet service provider assigns to your connection needs to stay the same. If you don’t have a static IP, as long as you leave your modem/router permanently swiched on your IP shouldn’t change. However that isn’t an optimal solution.

If your ISP cannot offer you a static IP at all, you can still move forward with the project by using an organisation that offers a Dynamic DNS. These organisations offer you your own static IP host name (e.g. mojo.monkeynuts.com) instead of a number, keep track of your changing IP address and linking it to the new host name. From what I can gather, your modem needs to support (have an in-built client for…) these DDNS services. As an example, two companies are No-IP andDynDNS.com. Please note that I haven’t used those two, they are just offered as examples.

Now, to find your IP address… usually this can be found by logging into your router’s administration page – it is usually 192.168.0.1 but could be different. Check with your supplier or ISP if they supplied the hardware. For this example, if I enter 10.1.1.1 in a web browser, and after entering my modem administration password, the following screen is presented:

WAN IP address router

What you are looking for is your WAN IP address, as you can see in the image above. To keep the pranksters away, I have blacked out some of my address.

The next thing to do is turn on port-forwarding. This tells the router where to redirect incoming requests from the outside world. When the modem receives such a request, we want to send that request to the port number of our Ethernet shield. Using the:

function in our sketch has set the port number to 125. Each modem’s configuration screen will look different, but as an example here is one:

Arduino router port forwarding

So you can see from the line number one in the image above, the inbound port numbers have been set to 125, and the IP address of the Ethernet shield has been set to 10.1.1.77 – the same as in the sketch.

After saving the settings, we’re all set. The external address of my Ethernet shield will be the WAN:125, so to access the Arduino I will type my WAN address with :125 at the end into the browser of the remote web device, which will contact the lonely Ethernet hardware back home.

Furthermore, you may need to alter your modem’s firewall settings, to allow the port 125 to be “open” to incoming requests. Please check your modem documentation for more information on how to do this.

Now from basically any Internet connected device in the free world, I can enter my WAN and port number into the URL field and receive the results. For example, from a phone when it is connected to the Internet via LTE mobile data:

Arduino webserver example cellular

So at this stage you can now display data on a simple web page created by your Arduino and access it from anywhere with unrestricted Internet access. With your previous Arduino knowledge (well, this is chapter sixteen) you can now use data from sensors or other parts of a sketch and display it for retrieval.

Displaying sensor data on a web page

As an example of displaying sensor data on a web page, let’s use an inexpensive and popular temperature and humidity sensor – the DHT22. You will need to install the DHT22 Arduino library which can be found on this page. If this is your first time with the DHT22, experiment with the example sketch that’s included with the library so you understand how it works.

Connect the DHT22 with the data pin to Arduino D2, Vin to the 5V pin and GND to … GND:

arduino ethernet freetronics etherten dht22 humid

Now for our sketch – to display the temperature and humidity on a web page. If you’re not up on HTML you can use online services such as this to generate the code, which you can then modify to use in the sketch.

In the example below, the temperature and humidity data from the DHT22 is served in a simple web page:

It is a modification of the IDE’s webserver example sketch that we used previously – with a few modifications. First, the webpage will automatically refresh every 30 seconds – this parameter is set in the line:

… and the custom HTML for our web page starts below the line:

You can then simply insert the required HTML inside client.print() functions to create the layout you need.

Finally – here’s an example screen shot of the example sketch at work:

arduino ethernet freetronics etherten dht22 humid cellular

You now have the framework to create your own web pages that can display various data processed with your Arduino.

Remote control your Arduino from afar

We have a separate tutorial on this topic, that uses the teleduino system.

Conclusion

So there you have it, another useful way to have your Arduino interact with the outside world. Stay tuned for upcoming Arduino tutorials by subscribing to the blog, RSS feed (top-right), twitter or joining our Google Group. And if you enjoyed the tutorial, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a third printing!) “Arduino Workshop” from No Starch Press.

tronixstuff

Posted in arduino, DEV-09026, DEV-11230, DHT22, ethernet, internet, iot, shield, tronixstuff, tutorial12 Comments

Tutorial – Send email with the Arduino Yún

Introduction

This is the third in a series of tutorials examining various uses of the Arduino Yún. In this article we’ll examine how your Arduino Yún can send email from a Google email account. Doing so gives you a neat and simple method of sending data captured by the Arduino Yún or other notifications.

Getting Started

If you haven’t already done so, ensure your Arduino Yún can connect to your network via WiFi or cable – and get a Temboo account (we run through this here). And you need (at the time of writing) IDE version 1.5.4 which can be downloaded from the Arduino website.

Finally, you will need a Google account to send email from, so if you don’t have one – sign up here. You might want to give your Arduino Yún an email address of its very own.

Arduino Yun Yún front

Testing the Arduino Yún-Gmail connection

In this first example we’ll run through the sketch provided by Temboo so you can confirm everything works as it should. This will send a simple email from your Arduino Yún to another email address. First, copy the following sketch into the IDE but don’t upload it yet:

Before uploading you need to enter five parameters – the email address to send the email with, the password for that account, the recipient’s email address, and the email’s subject line and content. These can be found in the following lines in the sketch – for example:

So enter the required data in the fields above. If you’re sending from a Google Apps account instead of a Gmail account – that’s ok, just enter in the sending email address as normal. Temboo and Google will take care of the rest.

Finally, create your header file by copying the the header file data from here (after logging to Temboo) into a text file and saving it with the name TembooAccount.h in the same folder as your sketch from above. You know this has been successful when opening the sketch, as you will see the header file in a second tab, for example:

arduino yun temboo header file

Now you can upload the sketch, and after a few moments check the recipient’s email account. If all goes well you will be informed by the IDE serial monitor as well (if your Yún is connected via USB). It’s satisfying to see an email come from your Arduino Yún, for example in this short video.

If your email is not coming through, connect your Arduino Yún via USB (if not already done so) and open the serial monitor. It will let you know if there’s a problem in relatively plain English – for example:

Error
A Step Error has occurred: “An SMTP error has occurred. Make sure that your credentials are correct and that you’ve provided a fully qualified Gmail
username (e.g., john.smith@gmail.com) for the Username input. When using Google 2-Step Verification, make sure to
provide an application-specific password. If this problem persists, Google may be restricting access to your account, and you’ll need to
explicitly allow access via gmail.com.”. The error occurred in the Stop (Authentication error) step.
HTTP_CODE
500


So if this happens, check your email account details in the sketch, and try again.

Sending email with customisable subject and content data

The example sketch above is fine if you want to send a fixed message. However what if you need to send some data? That can be easily done. For our example we’ll generate some random numbers, and integrate them into the email subject line and content. This will give you the framework to add your own sensor data to emails from your Arduino Yún. Consider the following sketch:

Review the first section at the start of void loop(). We have generated two random numbers, and then appended some text and the numbers into two Strings – emailContent and emailSubject.

These are then inserted into the SendEmailChoreo.addInput lines to be the email subject and content. With a little effort you can make a neat email notification, such as shown in this video and the following image from a mobile phone:

arduino yun email demonstration

Conclusion

It’s no secret that the Yún isn’t the cheapest development board around, however the ease of use as demonstrated in this tutorial shows that the time saved in setup and application is more than worth the purchase price of the board and extra Temboo credits if required.

And if you’re interested in learning more about Arduino, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a third printing!) “Arduino Workshop” from No Starch Press.

tronixstuff

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, email, gmail, iot, temboo, tutorial, Yún5 Comments

Tutorial – Google Docs and the Arduino Yún

Introduction

This is the second in a series of tutorials examining various uses of the Arduino Yún. In this article we’ll examine how your Arduino Yún can send data that it captures from the analogue and digital inputs and a real-time clock IC to an online Google Docs spreadsheet. Doing so gives you a neat and inexpensive method of capturing data in real-time and having the ability to analyse the data from almost anywhere, and export it with very little effort.

Getting Started

If you haven’t already done so, ensure your Arduino Yún can connect to your network via WiFi or cable – and get a Temboo account (we run through this here). And you need (at the time of writing) IDE version 1.5.4 which can be downloaded from the Arduino website. Finally, you will need a Google account, so if you don’t have one – sign up here.

Arduino Yun Yún front

Testing the Arduino Yún-Google Docs connection

In this first example we’ll run through the sketch provided by Temboo so you can confirm everything works as it should. First of all, create a spreadsheet in Google Docs. Call it “ArduinoData” and label the first two columns as “time” and “sensor”, as shown in the screen shot below:

Arduino Yun Google Docs Spreadsheet

Always label the required columns. You can call them whatever you need. For new Google users, the URL shown in my example will be different to yours. Next, copy the following sketch to the IDE:

Now look for the following two lines in the sketch:

This is where you put your Google account username and password. For example, if your Google account is “CI5@gmail.com” and password “RS2000Escort” the two lines will be:

Next, you need to insert the spreadsheet name in the sketch. Look for the following line:

and change your-spreadsheet-title to ArduinoData. 

Finally, create your header file by copying the the header file data from here (after logging to Temboo) into a text file and saving it with the name TembooAccount.h in the same folder as your sketch from above. You know this has been successful when opening the sketch, as you will see the header file in a second tab, for example:

Arduino Yun sketch header file

Finally, save and upload your sketch to the Arduino Yún. After a moment or two it will send values to the spreadsheet, and repeat this every sixty seconds – for example:

Arduino Yun Google Docs Spreadsheet data

If your Yún is connected via USB you can also watch the status via the serial monitor.

 One really super-cool and convenient feature of using Google Docs is that you can access it from almost anywhere. Desktop, tablet, mobile… and it updates in real-time:

Arduino Yun_ Google Docs Spreadsheet_data_mobile

So with your Yún you can capture data and view it from anywhere you can access the Internet. Now let’s do just that.

Sending your own data from the Arduino Yún to a Google Docs Spreadsheet

In this example we’ll demonstrate sending three types of data:

With these types of data you should be able to represent all manner of things. We use the RTC as the time and date from it will match when the data was captured, not when the data was written to the spreadsheet. If you don’t have a DS3232 you can also use a DS1307.

If you’re not familiar with these parts and the required code please review this tutorial. When connecting your RTC – please note that SDA (data) is D2 and SCL (clock) is D3 on the Yún.

The sketch for this example is a modified version of the previous sketch, except we have more data to send. The data is captured into variables from the line:

You can send whatever data you like, as long as it is all appended to a String by the name of rowdata. When you want to use a new column in the spreadsheet, simply append a comma “,” between the data in the string. In other words, you’re creating a string of CSV (comma-separated values) data. You can see this process happen from the line that has the comment:

in the example sketch that follows shortly. Finally, you can alter the update rate of the sketch – it’s set to every 60 seconds, however you can change this by altering the 60000 (milliseconds) in the following line:

Don’t forget that each update costs you a call and some data from your Temboo account – you only get so many for free then you have to pay for more. Check your Temboo account for more details.

So without further ado, the following sketch will write the values read from A0~A3, the status of D7 and D8 (1 for HIGH, 0 for LOW) along with the current date and time to the spreadsheet. Don’t forget to update the password, username and so on as you did for the first example sketch:

… which in our example resulted with the following:

Arduino Yun Google Docs Spreadsheet time date data

… and here is a video that shows how the spreadsheet updates in real time across multiple devices:

 Conclusion

It’s no secret that the Yún isn’t the cheapest devleopment board around, however the ease of use as demonstrated in this tutorial shows that the time saved in setup and application is more than worth the purchase price of the board and extra Temboo credits if required.

And if you’re interested in learning more about Arduino, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a third printing!) “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, DS3232, Google Docs, iot, spreadsheet, temboo, tronixstuff, tutorial, Yún7 Comments

Arduino and the XOBXOB IoT Platform

Introduction

If you’re awake and an Internet user, sooner or later  you’ll come across the concept of the “Internet of Things”. It is the goal of many people and organisations to have everything connected to everything for the exchange of data and the ability to control things. And as time marches on, more systems (or “platforms”) are appearing on the market. Some can be quite complex, and some are very easy to use – and this is where our interests lay. In the past we’ve examined the teleduino system, watched the rise of Ninja Blocks, and other connected devices like the lifx bulb and more.

However the purpose of this article is to demonstrate a new platform – XOBXOB (pronounced “zob-zob”) that gives users (and Arduino users in particular) a method of having remote devices connect with each other and be controlled over the Internet. At the time of writing XOBXOB is still in alpha stage, however you’re free to give it a go. So let’s do that now with Arduino.

Getting Started

You’ll need an Arduino and Ethernet shield – or a combination board such as a Freetronics EtherTen, or a WiFly board from Sparkfun. If you don’t have any Ethernet hardware there is a small application you can download that gives your USB-connected Arduino a link to the XOBXOB service. However before that, visit the XOBXOB homepage and register for an account. From there you can visit the dashboard which has your unique API key and a few controls:

XOBXOB dashboard

Now download the Arduino libraries and copy them into the usual location. If you don’t have an Ethernet shield, also get the “connector” application (available for all three OSs). The connector application is used after uploading the XOBXOB-enabled sketches to your Arduino and links it to the XOBXOB service.

Testing with exanples

Moving on, we’ve started with the basic LED control Ethernet sketch which is included in the XOBXOB library. It’s a fast way to check the system is working and your Internet connection is suitable. When using the examples for the first time (or any other XOBXOB sketch, don’t forget to enter your API key and Ethernet MAC address, for example:

We have the EtherTen connected to the ADSL and control via a cellular phone. It’s set to control digital pin 8 so after inserting an LED it worked first time:

The LED is simply turned on and off by using the ON/OFF panel on the XOBXOB dashboard, and then clicking “SET”. You can also click “GET” to retrieve the status of the digital output. The GET function is useful if more than one person is logged into the dashboard controlling what’s at the other end.

Now for some more fun with the other included example, which controls a MAX7219 LED display driver IC. We used one of the boards from the MAX7219 test a while back, which worked fine with the XOBXOB example in the Arduino library:

If this example doesn’t compile for you, remove the line:

Once operating, this example is surprisingly fun, and could be built into a small enclosure for a simple remote-messaging system.

Controlling your own projects

The functions are explained in the Arduino library guide, which you should download and review. Going back to the LED blink example, you can see how the sketch gets and checks for a new on/off message in the following code:

So instead of the digitalWrite() functions, you can insert whatever you want to happen when the ON/OFF button is used on the XOBXOB dashboard.  For example with the use of a Powerswitch Tail you could control a house light or other device from afar.

If you want to control more than one device from the dashboard, you need to create another XOB. This is done by entering the “advanced” dashboard and clicking “New”. After entering a name for the new XOB it will then appear in the drop-down list in either dashboard page. To then assign that XOB to a new device, it needs to be told to request that XOB by name in the Arduino sketch.

For example, if you created a new XOB called “garagelight” you need to insert the XOB name in the XOB.requestXOB() function in the sketch:

and then it will respond to the dashboard when required. Later on we’ll return to XOBXOB and examine how to upload information from a device to the dashboard, to allow remote monitoring of temperature and other data.

Conclusion

Experimenting with XOBXOB was a lot of fun, and much easier than originally planned. Although only in the beginning stages, I’m sure it can find a use with your hardware and a little imagination. Note that XOBXOB is still in alpha stage and not a finished product. For more information, visit hte XOBXOB website. And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, ethernet, etherten, iot, tronixstuff, tutorial, WRL-09954, XOBXOB4 Comments


Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: