Archive | kit review

Adventures with SMT and a POV SMT Kit

Introduction

There’s a lot of acronyms in the title for this article – what I wanted to say was “Adventures with surface-mount technology soldering with the Wayne & Layne Blinky Persistence-of-vision surface-mount technology reprogrammable light emitting diode kit…” No, seriously. Anyhow – after my last attempt at working with hand soldering surface-mount components couldn’t really be called a success, I was looking for something to start again with. After a little searching around I found the subject for today’s review and ordered it post-haste. Delivery from the US to Australia was twelve calendar days – which is pretty good, so you know the organisation is shipping quickly once you paid.

The kit is by “Wayne and Layne” which was founded by two computer engineering graduates. They have a range of open-source electronics kits that look like fun and a lot of “blinkyness”. Our POV kit is a simple persistence-of-vision display. By using eight LEDs in a row you can display words and basic characters by waving the thing through the air at speed, giving the illusion of a larger display. An analogy to this would be a dot-matrix printer that prints with ink which only lasts a fraction of a second. More on that later, first – putting it together.

Assembly

Like most other kits it arrived in an anti-static bag, with a label clearly telling you where the instructions are:

Upon opening the amount of items included seemed a little light:

However the instructions are detailed:

… and upon opening, reveal the rest of the components:

… which are taped down to their matching description on the cardboard. When cutting the tape to access the parts, do it slowly otherwise you might send them flying off somewhere on the bench and spend ten minutes looking for it. Finally, the PCB in more detail:

After reviewing the instructions, it was time to fire up my trusty Hakko and get started. At this point a few tools will come in handy, including SMT tweezers, some solder wick and a piece of blu-tac:

Following the instructions, and taking your time are the key to success. When mounting the two-pad components – put a blob of solder on one pad, then use tweezers to move the component in whilst keeping that pad of solder molten, remove the iron, then let go with the tweezers. Then the results should resemble capacitor C1 on the board as shown below:

Then a quick blob at the other end seals it in. This was easily repeated for the resistors. The next step was the pre-programmed PIC microcontroller. It is in the form of a SOIC package type, and required some delicate work. The first step was to stick it down with some blu-tac:

… then solder down one pin at each end. Doing so holds it in place and you can remove the blu-tac and solder the rest of the pins in. I couldn’t solder each pin individually, so dragged solder across the pins then tried to soak up the excess with solder wick. I didn’t find this too successful, so instead used the solder sucker to mop up the excess:

suckersmall

If you solder, you should get one of these – they’re indispensable. Moving forward, the PIC finally sat well and looked OK:

Next was the power-switch. It clicks neatly into the PCB making soldering very easy. Then the LEDs. They’re tiny and some may find it difficult to identify the anode and cathode. If you look at the top, there is a tiny dot closer to one end – that end is the cathode. For example, in the lineup:

Soldering in the LEDs wasn’t too bad – however to save time do all the anodes first, then the cathodes:

At this point all the tricky work is over. There are the light-sensor LEDs and the reset button for the top:

And the coin-cell battery holder for the bottom. The battery is also included with the kit:

Operation

Once you’ve put the battery in, turn it on and wave it about in front of yourself. There are some pre-programmed messages and symbols already loaded, which you can change with the button. However you’ll want to put your own messages into the POV – and the process for doing so is very clever. Visit the programming page, and follow the instructions. Basically you enter the text into the form, set the POV to programming mode – and hold it up against two squares on your monitor. The website will then blink the data which is received by the light-sensitive LEDs. Once completed, the POV will inform you of success or failure. This method of programming is much simpler than having to flash the microcontroller every time – well done Wayne and Layne. A pin and connector is also included which allows you to wear the blinky as a badge. Maybe at a hackerspace, but not in public.

Once programmed some fun can be had trying out various speeds of waving the blinky. For example, here it is with the speed not fast enough at all:

… and a little bit faster:

And finally with me running past the camera:

Furthermore, there is an ‘easter egg’ in the software, which is shown below:

Conclusion

We had a lot of fun with this simple little kit, and learned a thing or two about hand-soldering SMT. It can be done with components that aren’t too small – however doing so was an interesting challenge and the results were quite fun. So it met our needs very well. Anyone can do it with some patience and a clean soldering iron. You can order the Blinky POV SMT kit directly from Wayne & Layne. Full-sized images available on flickr. This kit was purchased without notifying the supplier.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in blinky pov, kit review, review, SMT, soldering, tutorial, wayne and layne1 Comment

Kit Review – akafugu TWILCD Display Controller Backpacks

Introduction

Working with LCD displays is always useful, for debugging hardware by showing various data or part of a final design. Furthermore, using them can be rather wasteful of I/O pins, especially when trying to squeeze in other functionality. Plus there’s the external contrast adjustment, general wiring and the time taken to get it working. (Don’t believe me? See here).

However, using the subjects of this kit review – you can convert standard HD44780 LCD modules to use the I2C bus using a small backpack-style board – bringing total I/O down to four wires – 5V/3.3V, GND, SDA and SCL. If you’re using an Arduino – don’t panic if you’re not up on I2C – a software library takes care of the translation leaving you to use the LiquidCrystal functions as normal. Furthermore you can control the brightness and contrast (and colour for RGB modules) – this feature alone is just magic and will make building these features into projects much, much easier.

In this review we examine both of the backpacks available from akafugu. There are two available:

  • the TWILCD: Supports 1×16 and 2×7 connectors. It covers 16×1, 20×1, 16×2, 20×2 and 20×4 displays with and without backlight, and the
  • TWILCD 40×2/40×4/RGB: Supports 1×18 connector (for Newhaven RGB backlit displays), 2×8 connector (used for some 20×4 displays) and 2×9 connector (used for 40×4 displays)
If unsure about your LCD, see the list and explanation here. The LCDs used in this article were supplied with the mono and colour LCD bundles available from akafugu. So let’s see how easy they really are, and put them through their paces.

Assembly

The backpacks arrive in the usual anti-static bags:

First we’ll examine the TWILCD board:

Very small indeed. There are three distinct areas of interface – including the single horizontal or dual vertical connectors for various LCDs, and I2C bus lines as well as ICSP connectors for the onboard ATTINY4313 microcontroller. The firmware can be updated and is available on the akafugu github repository. If you look at the horizontal row along the top – there are eighteen holes. This allows for displays that have pins ordered 1~16 and also those with 15,16,1~16 order (15 and 16 are for the LCD backlight).

The next step is to solder in the connectors for power and I2C if so desired, and then the LCD to the backpack. Double-check that you have the pin numbering and alignment correct before soldering, for example:

and then you’re finished:

Simple. Now apply power and after a moment the the backpack firmware will display the I2C bus address:

Success! Now let’s repeat this with the TWILCD 40×2/40×4/RGB version. The backpack itself is still quite small:

… and has various pin alignments for different types of LCD module. Note the extra pins allowing use of RGB-backlit modules and 40×4 character modules. Again,  make sure you have the pins lined up against your LCD module before soldering the backpack in:

 Notice how the I2C connector is between the LCD and the backpack – there is enough space for it to sit in there, and also acts as a perfect spacer when soldering the backpack to the display module.  Once finished soldering, apply 5/3.3V and GND to check your display:

Using the TWILCDs

Using the backpacks is very easy. If you aren’t using an Arduino, libraries for AVR-GCC are available. If you are using the Arduino system, it is very simple. Just download and install the library from here. Don’t forget to connect the SDA and SCL connectors to your Arduino. If you’re unsure about LCD and Arduino – see here.

Programming for the TWILCD is dead simple – just use your existing Arduino sketch, but replace

with

and that’s it. Even creating custom characters. No new functions to learn or tricks to take note of – they just work. Total win. The only new functions you will need are to control the brightness and contrast… to set the brightness, use:

You can also set the brightness level to EEPROM as a default using:

Contrast is equally simple, using:


and

You can see these in action using the example sketches with the Arduino library, and in the following video:

Now for the TWILCD 40×2/40×4/RGB version. You have one more function to set the colour of the text:

where red, green and blue are values between 0 and 254. Easily done. You can see this in action using the test_RGB example sketch included with the library, and shown in the following video:

Conclusion

The TWILCD backpacks are simple, easy to setup and easy to use. They make using LCD displays a lot easier and faster for rapid prototyping, experimenting or making final products easier to use and program. A well-deserved addition to every experimenter’s toolkit. For more information, visit the akafugu product website. Full-size images available on flickr.

Note – the products used in this article were a promotional consideration from akafugu.jp, however the opinions stated are purely my own.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Translated version in Serbo-Croatian language.

Posted in akafugu, arduino, clocks, I2C, kit review, LCD, part review, rgb0 Comments

Kit Review – akafugu Simpleclock

Introduction

Finally another kit review! Thanks to akafugu in Japan (the people who brought us the Akafuino-X) we have a new clock kit to assemble – the Simpleclock. But first, what is it?

A clock – yes. You can never have too many clocks. Also, a digital thermometer and an alarm clock. It is based on the Atmel ATmega328 and Arduino IDE, with open-source firmware. The real-time clock uses the DS1307 circuit with battery backup that we know and love. This means you can completely modify the clock or concoct a completely different use for your Simpleclock. Countdown timer? There’s an idea…

Furthemore, the display module is their individual I2C-interface TWI Display. Therefore you have a clock as well as some Arduino-based hardware to experiment with later on. However, let’s assemble it first.

Assembly

Putting it all together was quite straight-forward. You can follow the detailed instructions at the akafugu site. All the parts required to make a functional clock as advertised are included with the kit:

Here are the brains of the operation – the pre-programmed microcontroller and the DS1307 real-time clock IC: 

You do receive an IC socket for the MCU, but not for the RTC – however this shouldn’t be an issue – just double-check your soldering and have some confidence. The PCBs are nicely laid out with solder-masking and a clear silk-screen:

The PCB on the left in the images above is for the display module – it runs an ATtiny microcontroller than can be worked with separately. Moving forward, you start with the lowest-profile components including the resistors and capacitors:

Take note of the vice – these are great, and light years ahead of the “helping hands” things you see around the traps. This was a Stanley model from element14. The resistors sit in nicely:

The next step is to put a blob of solder on the solder pad which will be beneath the backup battery holder – this forces contact between the negative side of the coin cell battery and the PCB:

Everything else went smoothly – I did have a small worry about the pin spacing for the USB power socket, however a clean tip and a steady hand solved that problem:

The rest of the clock board is much easier – just follow the instructions, take your time and relax. Soon enough you’ll be finished:

However I did have one “oops” moment – I left the PTC in too tall, so it needed to be bent over a little to give way for the display module when inserted:

The next task is to solder the four digit display to the display PCB – nothing new here:

Which leaves you with the standalone display module:

Using the Simpleclock

The firmware for clock use as described in the product page is already loaded in the MCU, so you can use it without needing and programming time or effort. It is powered via a mini-USB cable which you will need to acquire yourself. Frankly the design should have a DC socket and regulator – perhaps for the second revision 🙂 With second thought, it’s better running from USB. When I turn on the computer in the morning the Simpleclock beeps and ‘wakes up’. The menu system is simple and setting the time and alarm is deceptively so. Some thought has been put into the user interface so once assembled, you could always give the clock away as a gift without fear of being asked for help. However mine is staying on top of the monitor for the office PC:

And here it is in action on the bench:

If you get the urge to modify and update the code, it is easily done. As the Simpleclock kit is open source, all the data required is available from Akafugu’s github page. Please read the notes and other documentation before updating your clock. The easiest way to physically upload the new code will be with a 5V FTDI to USB adaptor or cable.

Conclusion

The Simpleclock was easy to assemble and works very well. It would make a fun kit for those learning to solder, as they have something that once completed is a reminder of their success and useful in daily life. Apart from using USB for power instead of a DC socket – it’s a great kit and I would recommend it to anyone interested in clocks, enjoys kit assembly, or as a gift to a young one to introduce them to electronics and microcontrollers.

Note – the Simpleclock kit was a promotional consideration from akafugu.jp, however the opinions stated are purely my own.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in akafugu, arduino, clocks, ds1307, I2C, kit review, tutorial2 Comments

Clock Kit Round-up – December 2011

Hello Readers

If there’s one thing that I really like it’s a good clock kit. Once constructed, they can be many things, including:

  • a point of differentiation from other items in the room;
  • a reminder of the past (nixie tubes!) or possible visions of the future;
  • the base of something to really annoy other people;
  • a constant reminder to get back to work;
  • a source of satisfaction from having made something yourself!

So just for fun I have attempted to find and list as many interesting and ‘out of the ordinary’ kits as possible, and ignored the simple or relatively mundane kits out there. If you are in the clock kit business and want a mention, let me know. So in no particular order, we have:

adafruit industries “ice tube” clock

Based around a vintage Soviet-era vacuum IV-18 type fluorescent display, the ice tube clock is a rare kit that includes a nice enclosure which keeps you safe from the high voltages as well as allowing the curious to observe your soldering skills. I reviewed this kit almost a year ago and the clock is still working perfectly. Here is a video of the ice tube clock in action:

After some travelling meeting various people it seems that quite a few of us have an ice tube clock. There is something quite mesmerising about the display, perhaps helping to recall memories of our youth in the 1970s and 80s.

nootropic design Defusable Clock Kit

As recently reviewed, this kit allows you to build a simulated ‘countdown’ timer for a hypothetical explosive device that also doubles as a clock with an alarm. For example:

Whatever you do, don’t make a ‘fake bomb’ and leave it out in public! Only bad things could happen 🙂

ogilumen nixie tube kits

Not a clock kit as such, however they have made doing it yourself very easy with their power supply and IN-12A nixie board kits. We made one ourselves in a previous review, as shown below:

Alan Parekh’s Multimeter Clock Kit

This is certainly one from left field – using the analogue multimeters to display hours, minutes and seconds. See Alan describe his kit in this video:

Certainly something different and would look great on the wall of any electronics-themed area or would easily annoy those who dislike the status-quo of clock design.

akafugu VFD Modular Clock

The team at akafugu have created a modular baseboard/shield kit which holds a shield containing four IV-17 alphanumeric nixie tubes to create your own clock or display system:

vfd-7

Unlike some of the other nixie tube kits the firmware has been made public and can be modified at will. In the future different display shields will be available to extend the use of the kit.

tubeclock.com kits

This site has two kits available, one using either four or six Soviet-era IN-12 type nixie tubes:

large_red

… and another kit using the Soviet-era IN-14 nixie tubes:

You have to hand it to the former Soviet Union – they knew how to over-produce nixie tubes. One rare example where we can benefit from a command economy!

evil mad science clocks

The certainly not evil people have two clock kits, the first being the Bulbdial Clock Kit:

This uses a unique ring of LEDs around the circumference of the clock face to create shadows to mark the time. It is also available in a range of housing and face styles. Their other kit of interest is the Alpha Clock Five:

The photo of this clock doesn’t do it justice – the alphanumeric displays are 2.3″ tall, making this one huge clock. It also makes use of a Chronodot real-time clock board, which contains a temperature-controlled oscillator  which helps give it an accuracy of +-/ 2 minutes per year. Furthermore you can modify this easily using an FTDI cable and the Arduino IDE with some extra software. Would be great for model railways (or even a real railway station) or those insanely conscious about the time.

Kabtronics Clock Kits

This organisation has several clock kits which span a range of technology from the later part of the twentieth century. These guys can only be true clock enthusiasts! Starting with the 1950s, they have their Nixie-Transistor Clock:

neononwall

Look – no integrated circuits, leaving the kit true to the era. If you need to hide from someone for a weekend, building this would be a good start. Next we move onto the 1960s and the Transistor Clock:

onwall_l

The 1960s brought with it LEDs so they are now used in this kit, however the logic is still all analogue electronics. However next we can move to the 1970s, and finally save some board space with the TTL Clock:

ttlclock_1721

This would still be fun to assemble but somewhat less punishing for those who don’t enjoy solder fumes that much. However you still have a nice kit and something to be proud of. Finally, the last in the line is the 1980s-themed Surface-Mount Technology Clock:

smtclock_l

So here we have a microcontroller, SMT components, and a typical reduction in board size. Their range is an excellent way of demonstrating the advances in technology over the years.

The GPS FLW Display Clock

Wow – this clock makes use of huge Burroughs B7971 15-segment nixie tube displays and a GPS receiver to make a huge, old-style/new-tech clock. Check out the demonstration video:

This thing is amazing. And it is actually cheaper to buy a fully-assembled version (huh). The same organisation also offers another GPS-controlled clock using IN-18 nixie tubes:

nixichron10

Again, it isn’t inexpensive – however the true nixie tube enthusiasts will love it. This clock would look great next to a post-modern vintage hifi tube amplifier. Moving forward to something completely different now, we have the:

adafruit industries monochron®

Almost the polar opposite of the nixie-tube clocks, the monochron uses an ATmega328 microcontroller and a 128 x 64 LCD module to create some interesting clock effects. For example:

Many people have created a variety of displays, including space invaders and the pong game simulation. The clock also includes the laser-cut acrylic housing which provides a useful and solid base for the clock.

Spikenzie Labs Solder : Time™ watch kit

Technically this is a watch kit, however I don’t think that many people would want to walk around wearing one – but it could be used in more permanent or fixed locations. Correct me if I’m wrong people. However in its defence it is a very well designed kit that is easy to solder and produces a nice clock:

It uses a separate real-time controller IC to stay accurate, and the design However this would be a great suggestion as a gift for a younger person to help them become interesting in electronics and other related topics. The asm firmware is also available for you to modify using Microchip MPLAB software if that takes your fancy.

Velleman Kits

The Velleman company has a range of somewhat uninspiring clock kits, starting with the Scrolling/Rolling LED Clock:

… the 2¼” 7-Segment Digital Clock:

This clock includes the housing and also accepts an optional temperature sensor, and therefore can display this as well. There is also the aptly-named – Digital LED Clock:

mk151

It tells the time and would be useful in a 1980s-era idea of the future movie set. The final velleman clock kit is the Jumbo Single-Digit Clock:

In all fairness this one looks quite interesting – the LED display is 57mm tall and the time is display one digit at a time. It is powered by a PIC16F630 however the firmware is proprietary to velleman.

Nocrotec Nixie Clocks

This company has a range of kits using nixie tubes and numitrons (low voltage incadescent displays in tubes). One particularly lovely kit is their IN-8 Blue Dream kit:

in-8-bd-h-side-blue

The blue glow at the base of the nixie tubes is due to an LED mounted at the bottom of the tube. Another aesthetically-pleasing kit is their Little Blue Something nixie clock. Check out their demonstration video:

nixiekits.eu

More IN-12 nixie clocks from Germany, the first being the Manuela_HR. You can buy the kit without an enclosure, or choose from the ‘office’ style:

… or this funky number:

You can specify it with RGB LEDs which colour-cycle to provide the effect shown above. For those not too keen you can also buy the kits pre-assembled. Their other kit is the Sven:

Sven_IN-8-2_720

It is available with IN-8 or IN-14 nixie tubes. The design quality of the enclosure is outstanding, a lot of effort has been made to produce a complete kit that “won’t look like a kit” when completed.

Minty Time

This is a small binary clock kit that fits in an Altoids tin:

This is a nice little kit as it is inexpensive, easy to make and very well documented. You could also mount this in a variety of flat surfaces, limited only by your imagination.

The Chronulator

Here we find a unique design that uses analogue panel meters in a similar method to the multimeter clock detailed previously. Here is an example of the completed kit:

IMG_1113

The kit contains the electronics and meters (or you can delete the meters for a discount if you already have some) however the housing is up to you. Furthermore, this kit has some of the best instructions (.pdf) I have ever seen. They are a credit to the organisation. Our final clock kit is the …

Denkimono

This is another clock kit in the style of ‘suspicious bomb timer’-looking – and it pulls this off quite well. Consider the following video demonstration:

As well as a normal clock it can function as an alarm, stopwatch, countdown timer and lap counter. The instructions (.pdf) are well written and easy to follow. Furthermore the Denkimono is also well priced for the kit and delivery.

Hopefully this catalogue of clock kits was of interest to you. If you have found some other kits to add to the list, or wish to disagree or generally comment about this article please do so via the comment section below. This article was not sponsored in any way.

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in clocks, kit review, nixie, review, TTL, VFD8 Comments

Review – nootropic design defusable clock kit

Hello Readers

In this review we examine an interesting, fun and possibly a prankster’s delight – the “Defusable Clock Kit” from nootropic design. The purpose of this kit is to construct a clock that counts down in a similar method to “movie-style” bombs, and it has terminals to connect four wires to the board. When the countdown timer is beeping away, you need to choose which wire to cut otherwise the “bomb” (alarm) goes off.

Furthermore, it also functions as a normal clock with an alarm, so you can use it daily normal activities. And finally it is based on the Arduino system which allows the kit to be reprogrammed at a later date. Now let’s move forward by examining kit construction.

Packaging

The kit arrives in a re-sealable antistatic pouch that can be reused without any effort:

Assembly

Detailed instructions can be found on the product website. The kit has a very clear and well-detailed silk screen on the PCB:

All the parts required are included, as well as an IC socket for the microcontroller:

Moving forward, the first parts to solder in are the resistors:

… then to the other lower-profile components:

… and the rest:

Which leaves us with the final product:

The clock is designed around simple Arduino-compatible circuitry, so if you wish to alter the firmware for the clock or upload your own sketch, you will need to fit the six-way header pins (in order to connect a USB-FTDI cable). As the pins are horizontal and tend to fall over, it’s easier to solder the first pin from the top of the PCB to hold it in place:

… then turn the PCB over and solder the rest.

Operation

Power is supplied via the DC socket on the PCB, and converted to 5V with a typical 7805 regulator. Therefore your input voltage can range between normal levels of 9~12VDC. Once the power is connected you can set the time for the clock and alarm for normal use. However if you feel like some sweat-inducing excitement, connect four wires each between the terminal blocks at the top of the PCB. Then press the red button to start the ten-second countdown. You can also increase or decrease the countdown time.

Your chances of defusing it in time can be quite low – by cutting one wire you can defuse it, by cutting two other wires nothing will happen and the clock keeps ticking – and by cutting the final wire… well, it’s all over. The wires are randomly chosen each time so you can’t predict which will be the correct wire. (Unless you change the firmware). Now let’s see the clock in action:

At this juncture it would be appropriate to warn the users of this kit not to … well, misuse the clock. To be honest I’m surprised such a kit originated from the US in the first place, but then again it never hurts to have a sense of humour. But seriously, to the untrained eye or casual security guard – this kit will look pretty damn real. So no making any mock explosive models with Play-Doh or metal cylinders and leaving them on the train or bus or under someone’s toilet seat. Then again, that would be good for a laugh – so please keep it at home, not in the railway station.

Further expansion

As mentioned earlier this kit is Arduino (Duemilanove) compatible, you can upload new sketches using a 5V FTDI cable or swapping the microcontroller over in another Arduino-style board. You have four LEDs, a 4-digit 7-segment LED module, a buzzer, and four digital I/O pins via the terminal block on the top-right of the PCB which could control external devices. Furthermore you can download and examine the clock sketch to modify or deconstruct it to determine the operation.

Conclusion

Apart from the laughs and possible mayhem you could cause with this, the kit is easy to assemble and works as described. It would make a great present to get someone interested in electronics, or help them with soldering practice. Furthermore it is certainly unique, and would be fun at parties and other events. High-resolution images available on flickr.

To order your own nootropic design defusable clock kit, head over to tronixlabs.com – offering a growing range and Australia’s best value for supported hobbyist electronics from adafruit, DFRobot, Freetronics, Seeed Studio and much more.

visit tronixlabs.com

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website.

Posted in arduino, bomb, defusable, kit review, notropics, timer, tronixlabs1 Comment

Review – Akafugu TWI 7-Segment Display

Hello Readers

Today we review a product from a new company based in Japan – akafugu. From their website:

Akafugu Corporation is a small electronics company that operates out of Tokyo, Japan. We specialize in fun and easy to use electronic gadgets. Our goal is to provide products that not only make prototyping faster and easier, but are also perfect for incorporation in finalized products.

And with this in mind we examine their TWI 7-segment display board. It consists of a four digit, seven-segment LED module driven by an Atmel ATtiny microcontroller – and has an I2C (or called TWI for “two-wire interface”) interface. By using I2C you only need power, GND, SDA and CLK lines – which saves on I/O and physical space.

Packaging

The display arrives appropriately packaged in reusable bags, and the main board is sealed in an anti-static pouch:

Assembly

The display board arrives partly-assembled. The MCU is presoldered to the board, so all we need to solder are the external connections on each side of the board, and the LED module. It is quite small and of an excellent quality:

The reason for having the power and data lines on both side is that you can then daisy-chain the displays. Speaking of which, the review unit arrived with a common-anode white LED module (data sheet.pdf) – however you can also order it in red or blue. Although they are not included, I soldered in a line of socket pins to allow for changing the LED module later on:

The final product is neat and compact, the view from the rear:

Note the ISP header pin sockets which allow low-level programming of the ATtiny4313 MCU. And the front:

akafugu also sell an optional housing stand, manufactured from transparent acrylic, which turns the display module into a nice little desk stand model:

Using the display module

Now to put the display to use. As it is controlled via I2C/TWI a variety of microcontroller platforms will be able to use the display. For our examples we will be using an Arduino-compatible board. Before moving forward you need to download and install the Arduino library which is available (as well as an avr-gcc library) on Github. Note that the example sketches in the Arduino library are for IDE v1.0.

As the module uses its own microcontroller, you can change the I2C bus address with a simple sketch (which is provided with the library). This is a great idea, which removes any chance of clashing with other bus devices, and allows more modules to be on the same bus. The default address is 0X12h.

When using the module, the following lines need to be in your sketch:

You can change the brightness mid-sketch using disp.setBrightness() with a parameter between zero and 255. To display an integer, use:

To turn on or off the decimal points, use:

To clear the display, use:

You can even display strings of text. Not every character can be displayed, however most can and the effect of scrolling looks good. For some example code:

Now to put the display to work! Using this IDE v1.0 demonstration sketch (download), we have created the following display:

For the curious, the current drawn with all segments on at full brightness is just over  33 milliamps:

Conclusion

When you need to display some numerical or other fitting data with a greater clarity than an LCD, or just love LEDs then you could do very well with this display. The designers have made a quality board and backed it up with documentation and (unlike many much larger, more prominent companies) a mature library to ensure it works first time. Furthermore the use of the I2C/TWI bus removes the problem of wasting digital output pins on your MCU – and the ability to change the bus address is perfect. So give akafugu a go and you will not be disappointed. The display and other goodies are available directly from akafugu.jp

Disclaimer – The parts reviewed in this article are a promotional consideration made available by akafugu.

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, I2C, kit review7 Comments

Kit Review – Snootlab DeuLigne LCD Arduino Shield

Hello everyone

Another month and time for another kit review 🙂 Once again we have another kit from the team at Snootlab in France – their DeuLigne LCD Arduino shield. Apart from having a two row, sixteen character backlit LCD there is also a five-way joystick (up, down, left, right and enter) which is useful for data entry and so on.

This LCD shield is different to any others I have seen on the market as it uses the I2C bus for interface with the LCD screen – thereby not using any digital pins at all. The interfacing is taken care of by a Microchip MCP23008 8-bit port expander IC, and Snootlab have written a custom LCD library which makes using the LCD very simple. Furthermore the joystick uses the analog input method, using analogue pin zero. But for now, let’s examine construction.

Please note that the kit assembled in this article is a version 1.0, however the shield is now at version 1.1. Construction is very easy, starting with the visual and easy to follow instructions (download). The authors really have made an effort to write simple, easy to follow instructions. The kit arrives as expected, in a reusable anti-static pouch:

As always everything was included, including stacking headers for Arduino. It’s great to see them included, as some other companies that should know better sometimes don’t. (Do you hear me Sparkfun?)

The PCB is solid and fabricated very nicely – the silk screen is very descriptive, and the PCB is 1.7mm thick. The joystick is surface-mounted and already fitted. Here’s the top:

… and the bottom:

Using a Freetronics EtherTen as a reference,  you can see that the DeuLigne PCB is somewhat larger than the standard Arduino shield:

The first components to solder in are the resistors:

… followed by the transistor and MCP23008. Do not use an IC socket, as this will block the LCD from seating properly…

After fitting the capacitor, contrast trimpot, LCD header pins and stacking sockets the next step is to bolt in the LCD with the standoffs:

The plastic bolts can be trimmed easily, and then glued to the nuts to stay tight. Or you can just melt them together with the barrel of your soldering iron 🙂 Finally you can solder in the LCD data pins and the shield is finished:

The only thing that concerned me was the limited space between LCD pins twelve~sixteen and the stacking header sockets. It may be preferable to solder the stacking sockets last to avoid possibly melting them when soldering the LCD. Otherwise everything was simple and construction took just under twenty minutes.

Now to get the shield working. Download and install the DeuLigne Arduino library, and then you can test your shield with the included examples. The LCD contrast can be adjusted with the trimpot between the joystick and the reset button. Note that this shield is fully Open Hardware compliant, and all the design files and so on are available from the ‘download’ tab of the shield product page.

Initialising the LCD requires the following code before void Setup():

Then in void Setup():

Now you can make use of the various LCD functions, including:

Reading the joystick position is easy, the function

returns an integer to pos representing the position. Right = 0, left = 3, up = 1, down = 2, enter = 4. Automatic text scrolling can be turned on and off with:

Creating custom characters isn’t that difficult. Each character consists of eight rows of five pixels. Create your character inside a byte array, such as:

There is an excellent tool to create these bytes here. Then allocate the custom character to a position number (0~7) using:

Then to display the custom character, just use:

And the resulting character filling the display:

Now for an example sketch to put it all together. Using my modified Freetronics board with a DS1307 real-time clock IC, we have a simple clock that can be set by using the shield’s joystick. For a refresher on the clock please read this tutorial. And for the sketch:

As you can see, the last delay statement is for 400 milliseconds. Due to the extra overhead required by using I2C on top of the LCD library, it slows down the refresh rate a little. Moving forward, a demonstration video:


So there you have it. Another useful, fun and interesting Arduino shield kit to build and enjoy. Although it is no secret I like Snootlab products, it is a just sentiment. The quality of the kit is first rate, and the instructions and support exists from the designers. So if you need an LCD shield, consider this one.

For support, visit the Snootlab website and customer forum in French (use Google Translate). However as noted previously the team at Snootlab converse in excellent English and have been easy to contact via email if you have any questions. Snootlab products including the Snootlab DeuLigne are available directly from their website. High-resolution images available on flickr.

So have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

[Disclaimer – the products reviewed in this article are promotional considerations made available by Snootlab]

Posted in arduino, DeuLigne, I2C, kit review, LCD, snootlab, tutorial2 Comments

Kit Review – the LoL Shield

[Update 13/07/2013 – Apprently the kit is in the process of being revised. Watch Sparkfun or Jimmie’s webpage for updates]

Hello readers

Another month, so time for another kit review. In this article we exame the LoL Shield by Jimmie P. Rodgers. So what’s all this about? Simple – the Lol Shield is a shield with nine rows of fourteen 3mm diameter LEDs, and at the time of writing was available in various colours. The shield has many uses, from being another form of hypnotising blinking LEDs, to displaying messages, artwork, data in visual form, or perhaps the basis for a simple computer game. More on that later – first, let’s see how it goes together.

As is becoming the norm lately, the kit arrives in a resealable anti-static bag:

The contents are few in type but huge in number, the PCB:

… at which point you start to think – “Oh, there goes the evening”. And the LEDs confirm it:

You will need 126 LEDs. There was a surplus of seven in my bag, a nice thought by the kit assemblers. There isn’t too much to worry about to start off with, just remember the anodes for the LEDs are on the left-hand side, and start soldering. The greatest of shields starts with a single LED:

However after a while you get into the swing of it:

At this point, one wonders if there is a better way to solder all these in. If you diagonally stagger the LEDs as such:

the legs stay well apart making soldering a little easier:

… however one still needs to take care to keep the LEDs flush with the PCB. I wouldn’t want to do this for a living… Still, many more to solder in:

And – we’re done!

Phew – that’s a lot of LEDs. An inspection of the other side of the PCB to check for shorts in the soldering is a prudent activity during the soldering process. The final step was to now solder in the shield header pins:

And – we’re done! This example took me just over one hour, includind a couple of stretch and breathe breaks. When soldering a large amount, always try to have good ventilation and hopefully a solder fume extractor as well. Furthermore, pause to check your work every now and then, you don’t want to install the lot and find one LED is in the wrong way. To control the 126 LEDs the LoL Shield uses a technique called Charlieplexing. Furthermore, the creator has documented his design process and how this works very well on his website located here.

From a software perspective – there is a library to download and install, it can be found in the downloads section of this site. Don’t forget to use the latest version if you’re using Arduino v1.0 or greater. This will also introduce some demonstration sketches in the File>examples section of the Arduino IDE. The first one to try is basic test, as it fires up every LED. Here is a short video of this example:

Now that we have seen some blinking action, how do we control the shield? As mentioned earlier, you will need the library installed. Now consider the following basic sketch – it shows how we can individually control each LED:

As you can see in the sketch above we need to include the “Charlieplexing” library, and create an instance of LedSign in void setup().  Then each LED can be easily controlled with the function LedSign::Set(x,y,z) – where x is 1~14, y is 1~9 and z is 1 for on, or 0 for off. Here is a short video of the example above in action:

If you want to display animations of some sort – there is a tool to help minimise the work required to create each frame. Consider the example sketch Basic_Test that is included with the LoL Shield library – take note of the large array described before void setup();. This array contains data to describe each frame of the animation in the demonstration sketch. One can create the variables required for each frame by using the spreadsheet found here. Open the spreadsheet (Using OpenOffice.org or Libre Office), then go to the “Test Animation” tab as such:

You can define the frame on the left hand side, and the numbers required for the Arduino sketch are provided on the right. Easy. So for a final example, here is my demonstration animation. You can download the sketch, and the spreadsheet file used to create the variables to insert into the sketch.

However, thanks to an interesting website – there is a much, much easier way to create the animations. Head over to the LoL Shield Theatre web site. There you can graphically create each slide of your animation, then download the Arduino sketch to make it work. You can even test your animations on the screen just for fun. For example, here is something I knocked out in a few minutes – and the matching sketch. And the animation in real life:

So there you have it – another fun and interesting Arduino shield that won’t break the bank. For further questions about the Digit Shield visit the website.

As always, thank you for reading and I look forward to your comments and so on. Furthermore, don’t be shy in pointing out errors or places that could use improvement. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts, follow me on twitter,  facebook or Google+, or join our Google Group for further discussion. No pre-teen girls were used in this kit review.

High resolution images are available on flickr.

[Note – The kit was ordered by myself and reviewed without notifying the manufacturer]

Posted in arduino, jimmie rodgers, kit review, lesson, lol shield, review, tutorial6 Comments

Kit Review – Snootlab Rotoshield

Hello Readers

[Update: 11/12/11 – Added example code and video]

In this article we will examine yet another product from a bundle sent for review by Snootlab, a Toulouse, France-based company that in their own words:

… designs and develops electronic products with an Open Hardware and Open Source approach. We are particularly specialized in the design of new shields for Arduino. The products we create are licensed under CC BY-SA v3.0 (as shown in documents associated with each of our creations). In accordance with the principles of the definition of Open Source Hardware (OSHW), we have signed it the 10th February 2011. We wish to contribute to the development of the ecosystem of “do it yourself” through original designs of products, uses and events.

Furthermore, all of their products are RoHS compliant and as part of the Open Hardware commitment, all the design files are available from the Snootlab website.

The subject of the review is the Snootlab Rotoshield – a motor-driver shield for our Arduino systems. Using a pair of L293 half-bridge motor driver ICs, you can control four DC motors with 256 levels of speed, or two stepper motors. However this is more than just a simple motor-driver shield… The PCB has four bi-colour LEDs, used to indicate the direction of each DC motor; there is a MAX7313 IC which offers another eight PWM output lines; and the board can accept external power up to 18V, or (like other Snootlab shields) draw power from a PC ATX power supply line.

However as this is a kit, let’s follow construction, then explore how the Rotoshield could possibly be used. [You can also purchase the shield fully assembled – but what fun would that be?] Assembly was relatively easy, and you can download instructions and the schematic files in English. As always, the kit arrives in a reusable ESD bag:

There are some SMD components, and thankfully they are pre-soldered to the board. These include the SMD LEDs, some random passives and the MAX7313:

Thankfully the silk-screen is well noted with component numbers and so on:

All the required parts are included, including stackable headers and IC sockets:

It is nice to not see any of the old-style ceramic capacitors. The people at Snootlab share my enthusiasm for quality components. The assembly process is pretty simple, just start with the smaller parts such as capacitors:

… then work outwards with the sockets and terminals:

… then continue on with the larger, bulkier components. My favourite flexible hand was used to hold the electrolytics in place:

… followed with the rest, leaving us with one Rotoshield:

If you want to use the 12V power line from the ATX socket, don’t forget to bridge the PCB pads between R7 and the AREF pin. The next thing to do is download and install the snooter library to allow control of the Rotoshield in your sketches. There are many examples included with the library that you can examine, just select File > Examples > snootor in the Arduino IDE to select an example. Function definitions are available in the readme.txt file included in the library download.

[Update]

After acquiring a tank chassis with two DC motors, it was time to fire up the Rotoshield and get it to work. From a hardware perspective is was quite simple – the two motors were connected to the M1 and M2 terminal blocks, and a 6V battery pack to the external power terminal block on the shield. The Arduino underneath is powered by a separate PP3 9V battery.

In the following sketch I have created four functions – goForward(), goBackward(), rotateLeft() and rotateRight(). The parameter is the amount of time in milliseconds to operate for. The speed of the motore is set using the Mx.setSpeed() function in void Setup(). Although the speed range is from zero to 255, this is PWM so the motors don’t respond that well until around 128. So have just set them to full speed. Here is the demonstration sketch:

… and the resulting video:

For support, visit the Snootlab website and customer forum in French (use Google Translate). However as noted previously the team at Snootlab converse in excellent English and have been easy to contact via email if you have any questions. Snootlab products including the Snootlab Rotoshield are available directly from their website. High-resolution images available on flickr.

As always, thank you for reading and I look forward to your comments and so on. Furthermore, don’t be shy in pointing out errors or places that could use improvement. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts, follow on twitterfacebook, or join our Google Group.

[Disclaimer – the products reviewed in this article are promotional considerations made available by Snootlab]

Posted in arduino, I2C, kit review, L293, MAX7313, microcontrollers, motor shield, product review, rotoshield, snootlab5 Comments

Kit Review – Snootlab Mémoire SD card/RTC/prototyping shield

Hello Readers

In this article we will examine another product from a bundle sent for review by Snootlab, a Toulouse, France-based company that in their own words:

… designs and develops electronic products with an Open Hardware and Open Source approach. We are particularly specialized in the design of new shields for Arduino. The products we create are licensed under CC BY-SA v3.0 (as shown in documents associated with each of our creations). In accordance with the principles of the definition of Open Source Hardware (OSHW), we have signed it the 10th February 2011. We wish to contribute to the development of the ecosystem of “do it yourself” through original designs of products, uses and events.

Furthermore, all of their products are RoHS compliant and as part of the Open Hardware commitment, all the design files are available from the Snootlab website.

The subject of the review is the Snootlab Mémoire – an SD card data logging shield with on-board DS1307 real time clock [and matching backup battery] and prototyping area. It uses the standard SdFat library to write to normal SD memory cards formatted in FAT16 or FAT32. You can download the library from here. The real time clock IC is an easy to use I2C-interface model, and I have documented its use in great detail in this tutorial.

Once again, shield assembly is simple and quite straightforward. You can download an illustrated assembly guide from here, however it is in French. But everything you need to know is laid out on the PCB silk-screen, or the last page of the instructions. The it arrives in a reusable ESD bag:

… and all the required parts are included – including an IC socket and the RTC backup battery:

… the PCB is thick, with a very detailed silk-screen. Furthermore, it arrives with the SD card and 3.3V LDO (underneath) already pre-soldered – a nice touch:

The order of soldering the components is generally a subjective decision, and in this case I started with the resistors:

… and then worked my way out, but not fitting the battery nor IC until last. Intrestingly, the instructions require the crystal to be tacked down with some solder onto the PCB. Frankly I didn’t think it would withstand the temperature, however it did and all is well:

Which leaves us with a fully-assembled Mémoire shield ready for action:

Please note that a memory card is not included with the kit. If you are following along with your own Mémoire, the first thing to do after inserting the battery, IC and shield into your Arduino board and run some tests to ensure all is well. First thing is to test the DS1307 real-time clock IC. You can use the following sketch from chapter seven of my Arduino tutorial series:

If you are unsure about using I2C, please review my tutorial which can be found here. Don’t forget to update the time and date data in void setup(), and also comment out the setDateDS1307() function and upload the sketch a second time. The sketch output will be found on the serial monitor box – such as:

rtcdemooutput

Those of you familiar with the DS1307 RTC IC know that it can generate a nice 1 Hz pulse. To take advantage of this the SQW pin has an access hole on the PCB, beetween R10 and pin 8 of the IC:

For instruction on how to activate the SQW output, please visit the last section of this tutorial.

The next test is the SD card section of the shield. If you have not already done so, download and install the SdFat libary. Then, in the Arduino IDE, select File > Examples > SdFat > SdFatInfo. Insert the formatted (FAT16/32) SD card into the shield, upload the sketch, then open the serial monitor. You should be presented with something like this:

sdcardinfo

As you can see the sketch has returned various data about the SD card. Finally, let’s log some data. You can deconstruct the excellent example that comes with the SdFat library titled SdFatAnalogLogger (select File > Examples > SdFat > SdFatAnalogLogger). Using the functions:

you can “write” to the SD card in the same way as you would the serial output (that is, the serial monitor).

If you have reached this far without any errors – Congratulations! You’re ready to log. If not, remove the battery, SD card and IC from your shield (you used the IC socket, didn’t you?). Check the polarised components are in correctly, double-check your soldering and then reinsert the IC, shield and battery and try again. If that fails, support is available on the Snootlab website, and there is also a customer forum in French (use Google Translate). However as noted previously the team at Snootlab converse in excellent English and have been easy to contact via email if you have any questions. Stay tuned for the final Snootlab product review.

Snootlab products including the Snootlab Mémoire are available directly from their website. High-resolution images available on flickr.

As always, thank you for reading and I look forward to your comments and so on. Furthermore, don’t be shy in pointing out errors or places that could use improvement. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts, follow on twitterfacebook, or join our Google Group.

[Disclaimer – the products reviewed in this article are promotional considerations made available by Snootlab]

Posted in arduino, ds1307, education, kit review, snootlab0 Comments

Kit Reviews: Snootlab Power ScrewShield and I2C Power Protoshield

Hello Readers

In this article we will examine the first two products from a bundle sent for review by Snootlab, a Toulouse, France-based company that in their own words:

… designs and develops electronic products with an Open Hardware and Open Source approach. We are particularly specialized in the design of new shields for Arduino. The products we create are licensed under CC BY-SA v3.0 (as shown in documents associated with each of our creations). In accordance with the principles of the definition of Open Source Hardware (OSHW), we have signed it the 10th February 2011. We wish to contribute to the development of the ecosystem of “do it yourself” through original designs of products, uses and events.

Furthermore, all of their products are RoHS compliant and as part of the Open Hardware commitment, all the design files are available from the Snootlab website. First, let’s examine the Power Screwshield kit. This is a feature-laden prototyping shield suitable for Arduino Uno and compatible series boards. It can be used with the Mega, however not all of the I/O pins will be available.

Apart from obvious use as a prototyping shield, there are also three other useful features:

  • space for a 16-pin SOIC SMD part in the prototyping area;
  • a full line of screw terminals that connect to all the shield pin connections (in a similar way to the Wingshield Screwshield);
  • and a socket to allow power to be sourced from a standard computer ATX power supply, which brings 5V and 12V DC to the shield. I have never seen this implemented on a shield in the past – a very novel and useful idea.
If you are unfamiliar with the ATX power supply options, consider this image of the tronixstuff bench PC’s internals:
ldo3ss
The connector we would use is the one with the four round pins in a single row. In recent times using PC power supplies as bench power supply units has become quite common, so the designers at Snootlab have taken advantage of this in a very clever way by allowing their Power ScrewShield to use these power supplies. Assembly of the shield is simple and well documented. Although it is self-explanatory, you can download an illustrated guide from here. The kit is packaged in a reusable ESD bag:

bagss

Assembly of the shield is simple and well documented. Although it is self-explanatory, you can download an illustrated guide from here. The kit is packaged in a reusable ESD bag:

… which contains all the necessary parts:

partsss

… and a very high quality PCB:

pcbss

The PCB thickness is over 1mm, and as you can see from the image above the silk-screening describes all the areas of the PCB in a detailed manner. Note that this shield is much larger than a standard Arduino shield – this becomes obvious when compared with a standard prototyping shield:

pcbcompss

Assembly was very smooth and quick. There are a couple of things to watch out for, for example you need to slide the terminal blocks together so that they are flush on the sides, such as:

blocks

… if you want to enable the 12V DC rail from the ATX power lead, short out the jumper SJ1 with a blob of solder:

enable12vss

… when soldering the PC power connector, be sure to make the clamp bracket flush with the socket, for example:

atxss

… and finally, to enable use of the shield’s LED, you need to cut the track in this area on the underside of the PCB:

Although at first the introduction of another Arduino prototyping shield may not have seemed that interesting – this version from Snootlab really goes all out to cover almost every possible need in a shield all at the same time. Sure, it is a lot larger – but none of the board space is wasted – and those terminal blocks would be very hand for making some more permanent-style prototypes with lots of external wiring.  And the ability to accept power from a PC ATX-style power supply unit is certainly original and possibly very useful depending on your application. So if you need to create something that needs a lot of power, a lot of prototyping space, and a lot of wiring – this is the protoshield for you.

For the second half of the review we have the Snootlab I2C Power Protoshield. This is another example of an Arduino prototyping shield with some interesting twists. Apart from employing the same PC power connector as used with the Power ScrewShield, this shield is designed for hard-core I2C-bus enthusiasts. (What’s I2C? Check my tutorials). This is due to the 10-pin HE connector on the edge of the board – it contains pins for SCL, SDA, 3.3V, 5V and GND. With this you could use you own cable connections to daisy-chain other devices communicating via the I2C bus. Again, the shield is a kit and assembly was simple.

Like other Snootlab products, the kit arrives in a reusable ESD bag:

bag

… with a high-quality thick PCB that has a very detailed silk-screen layer:

pcb

… and all the required parts are included:

parts1

When soldering in the shield connectors, using another shield as a jig can save time:

headers

And we’re finished:

finished

One could also mount a small solderless breadboad on the I2C Power Protoshield:

finishedwithbreadboard

One great feature is the inclusion of an NCP1117DT33 3.3V 1A voltage regulator. Using this you can source 3.3 volts at up to one amp of current (only) when using the PC power supply connection. This is a great idea, as in the past it can be too easy to accidentally burn out the FTDI chip on an Arduino Duemilanove by drawing too much current from the 3.3V pin. The use of the external 3.3V supply is controlled by a jumper on the header pins here:

intext3v3

Finally, in the image above you can see the area for external I2C pull-up resistors. Generally with our Arduino the internal pull-up resistors in the microcontroller are adequate, however with many I2C devices in use (e.g. eight 24LC512 EEPROMS!) external pull-ups are required.

After examining the two shields I am impressed with the quality of the components and PCBs, as well as the interesting features described in the review. Theyare certainly unique and very much useful if required, especially the PC power supply connections. Support is available on the Snootlab website, and there is also a customer forum in French (use Google Translate). However the people at Snootlab converse in excellent English and have been easy to contact via email if you have any questions. Stay tuned for more interesting Snootlab product reviews.

Snootlab products including the I2C Power Protoshield and the Power ScrewShield are available directly from their website.

As always, thank you for reading and I look forward to your comments and so on. Furthermore, don’t be shy in pointing out errors or places that could use improvement. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts, follow on twitterfacebook, or join our Google Group.

[Disclaimer – the products reviewed in this article are promotional considerations made available by Snootlab]

Posted in arduino, kit review, microcontrollers, snootlab13 Comments

Kit review – nootropic design Digit Shield

Hello readers

Time once again to examine another kit. This week we have the nootropic design Digit Shield for Arduino Uno/Duemilanove and compatible boards. Although a finger can be called a digit this shield is not some sort of biotechnological experiment – instead it gives us four seven-segment LED displays to show various forms of numerical data from our Arduino sketches.

Although many people may be tempted to use a standard LCD unit, there are a few advantages to using an LED display – such as digit size, enhanced readability in daylight, and LED displays are generally much more robust than LCDs. Therefore there should be many uses for the Digit Shield. Furthermore, the people at nootropic design have been awesome as they support the Open Hardware Definition 1.0, and the Digit Shield design files have been made available under Creative Commons attribution-share alike.

First let’s run through construction, then operation with some demonstrations. The kit arrives in a nice reusable bag with a pointer to the online instructions:

1ss

Kit construction was relatively simple thanks to the excellent instructions by nootropic design. All the parts required for completion are included, except for IC sockets:

2ss

My demonstration kit included green LED displays, however it is also available in red-orange, depending on the retail outlet you choose. Once again the PCB is well laid out, with a good solder mask and a nicely labelled silk screen on top:

3ss

Now to start soldering. The process is nothing out of the ordinary, and should take around half an hour at the most. First in are the resistors:

4ss

Notice how the current-limiting resistors for the LED segments will be under the LED displays. So now we solder in the LED modules and create a resistor jail:

5ss

Now for the shift register and BCD to decimal ICs. I found inserting them a little tricky due to my large hands and the LED display already being in place, so it would be easier to fit the ICs before the LED modules:

6ss

This leaves us with the transistors, capacitors, header sockets and the reset button:

7ss

After soldering the reset button, you may need trim down the solder and legs (as shown below) otherwise there is a possibility they will rub the DC input socket on the Arduino board:

Finally the shield pins are fitted and the shield is ready:

9ss

The next task is to download and install the Digit Shield’s Arduino library. The latest version can be found here. Extract the folder into your

folder, then restart the Arduino IDE software.  A quick test of the shield can be accomplished with the SimpleCounter sketch available from the inbuilt examples. To find this, select File>Examples>DigitShield>SimpleCounter in the Arduino IDE, and upload the sketch. Hold onto the desk as you watch some numbers increment:


Using the shield in your own sketch is quite simple. Instead of reinventing the wheel there is an excellent explanation of the various functions available on the lower section of this page. A very useful feature is when the shield cannot display a number – it shows all four decimal points instead. The only slight criticism that comes to mind is the inability to directly display hexadecimal digits A~F, as the LED units lend themselves nicely to doing so; or the option of controlling each LED segment individually with a simple function. So let’s see if that is possible…

One of the joys of open hardware is the fact we can get the schematic, see how it works and attempt to solve such dilemmas ourselves. For those without software that can read Cadsoft EAGLE files, here is the schematic in .pdf format. The section we need to see is how the LED segments are driven. Look for the 74HC595 and 74LS247 ICs. Serial data is shifted out from the Arduino digital pins to the 74HC595 shift register. (For more information about how 74HC595s work with Arduino please visit this tutorial).

Outputs A~D (Q0~Q3) represent binary-coded decimal output and the outputs E~H (Q4~Q7) control the transistors which select the current digit to use. The BCD output is fed to the 74LS247 BCD to seven-segment drive IC. Although this is a very useful IC, it can only display the decimal digits and a few odd characters (see page two of the data sheet.pdf). So this leaves us unable to modify our sketches or the shield library to solve our problem. Such is life!

Perhaps the people at nootropic design can consider a change in the hardware for the next version to incorporate such requirements. However there are several projects available in the Digit Shield’s website that may be of interest, including a way to daisy-chain more than one shield at a time.

Nevertheless the Digit Shield is a simple kit that makes displaying Arduino-generated numerical data simple and clear. Furthermore lovers of blinking LEDs will have a ball. For further questions about the Digit Shield contact nootropic design or perhaps post on their forum.

As always, thank you for reading and I look forward to your comments and so on. Furthermore, don’t be shy in pointing out errors or places that could use improvement. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts, follow me on twitter or facebook, or join our Google Group for further discussion.

High resolution images are available on flickr.

[Note – The kit was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

Posted in arduino, kit review, notropics13 Comments

Kit review – nootropic design Hackvision

Hello readers

Time for another kit review – the nootropics design Hackvision,  a nice change from test equipment. The purpose of the Hackvision is to allow the user to create retro-style arcade games and so on that can be played on a monitor or television set with analogue video input. Although the display resolution is only 128 by 96 pixels, this is enough to get some interesting action happening. Frankly I didn’t think the Arduino hardware environment alone was capable of this, so the Hackvision was a pleasant surprise.

Assembly is quick and relatively simple, the instructions are online and easy to follow. All the parts required are included:

partsss

The microcontroller is pre-loaded with two games so you can start playing once construction has finished. However you will need a 5V FTDI cable if you wish to upload new games as the board does not have a USB interface. The board is laid out very clearly, and with the excellent silk-screen and your eyes open construction will be painless. Note that you don’t need to install R4 unless necessary, and if your TV system is PAL add the link which is between the RCA sockets. Speaking of which, when soldering them in, bend down the legs to lock them in before soldering, as such:

Doing so will keep them nicely flush with the PCB whilst soldering. Once finished you should have something like this:

almostdoness

All there is to do now is click the button covers into place, plug in your video and audio RCA leads to a monitor, insert nine volts of DC power, and go:

doness

Nice one. For the minimalist users out there, be careful if playing games as the solder on the rear of the PCB can be quite sharp. Included with the kit is some adhesive rubber matting to attach to the underside to smooth everything off nicely. However only fit this once you have totally finished with soldering and modifying the board, otherwise it could prove difficult to remove neatly later on. Time to play some gamesin the following video you can see how poor my reflexes are when playing Pong and Space Invaders:

[ … the Hackvision also generates sounds, however my cheap $10 video capture dongle from eBay didn’t come through with the audio … ]

Well that takes me back. There are some more contemporary games and demonstration code available on the Hackvision games web page. For the more involved Hackvision gamer, there are points on the PCB to attach your own hand-held controls such as paddles, nunchuks and so on. There is a simple tutorial on how to make your own paddles here.

Those who have been paying attention will have noticed that although the Hackvision PCB is not the standard Arduino Duemilanove-compatible layout, all the electronics are there. Apart from I/O pins used by the game buttons, you have a normal Arduino-style board with video and audio out. This opens up a whole world of possibilities with regards to the display of data in your own Arduino sketches (software). From a power supply perspective, note that the regulator is a 78L05 which is only good for 100mA of current, and the board itself uses around 25mA.

To control the video output, you will need to download and install the hackvision-version arduino-tvout library. Note that this library is slightly different to the generic arduino-tvout library with regards to function definitions and parameters. To make use of the included buttons easier, there is also the controllers library. Here is a simple, relatively self-explanatory sketch that demonstrates some uses of the tvout functions:

And the resulting video demonstration:

I will be the first to admit that my imagination is lacking some days. However with the sketch above hopefully you can get a grip on how the functions work. But there are some very good game implementations out there, as listed on the Hackvision games page. After spending some time with this kit, I feel that there is a lack of documentation that is easy to get into. Sure, having some great games published is good but some beginners’ tutorials would be nice as well. However if you have the time and the inclination, there is much that could be done. In the meanwhile you can do your own sleuthing with regards to the functions by examining the TVout.cpp file in the Hackvision tvout library folder.

For further questions about the Hackvision contact nootropic design or perhaps post on their forum. However the Hackvision has a lot of potential and is an interesting extension of the Arduino-based hardware universe – another way to send data to video monitors and televisions, and play some fun games.If you are looking for a shield-based video output device, perhaps consider the Batsocks Tellymate.

As always, thank you for reading and I look forward to your comments and so on. Furthermore, don’t be shy in pointing out errors or places that could use improvement. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts, follow me on twitter or facebook, or join our Google Group for further discussion.

High resolution images are available on flickr.

[Note – The kit was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

Posted in arduino, games, hackvision, kit review, LCD, microcontrollers, notropics2 Comments

Kit review – High Accuracy LC Meter

Hello readers

Time for another kit review. Lately one of my goals has been to make life easier and in doing so having some decent test equipment. One challenge of meeting that goal is (naturally) keeping the cost of things down to a reasonable level. Unfortunately my eyesight is not the best so I cannot read small capacitor markings – which makes a capacitance meter necessary. Although I have that function within my multimeter, it is often required to read resistors in the same work session.

Thus the reason for this kit review – the High Precision LC Meter kit. The details were originally published in the May 2008 issue of Australia’s Silicon Chip magazine. The meter specifications are:

  • Capacitance – 0.1pF to over 800 nF with four-digit resolution;
  • Inductance – 10 nH to over 70 mH with four-digit resolution;
  • Accuracy of better than +/- 1% of the reading;
  • Automatic range selection, however only non-polarised capacitors can be measured.

The power drain is quite low,  between 8 (measurement) and 17 milliamps (calibration). Using a fresh 9V alkaline battery you should realise around fifty to sixty hours of continuous use. At this point some of you may be wondering if it is cheaper to purchase an LC meter or make your own. A quick search found the BK Precision 875B LCR meter with the same C range and a worse L range for over twice the price of the kit. Although we don’t have resistance measurement in our kit, if you are building this you already have a multimeter. So not bad value at all. And you can say you built it 🙂

Speaking of building, assembly time was just under two hours, and the kit itself is very well produced. The packaging was the typical retail bag:

retailkitss

The first thing that grabs your attention is the housing. It is a genuine, made in the US Hammond enclosure – and has all the required holes and LCD area punched out, so you don’t need to do any drilling at all:

hammondcasess

The enclosure has nice non-slip rubberised edging (the grey area) and also allows for a 9V battery to be housed securely. The team at Altronics have done a great job in redesigning the kit for this enclosure, much more attractive than the magazine version. The PCB is solder-masked and silk-screened to fine standard:

pcbss2

There are two small boards to cut and file off from the main PCB. We will examine them later in the article. All required parts for completion were included, and it is good to see 1% resistors and an IC socket for the microcontroller:

partsss1

At first I was a little disappointed to not have a backlit LCD module, however considering the meter is to be battery operated (however there is a DC socket for a plugpack) and you wouldn’t really be using this in the dark, a backlight wouldn’t be necessary. Construction was easy enough, the layout on the PCB is well labelled, and plenty of space between pins. Lately I have started using a lead-former, and can highly recommend the use of one:

leadformerss

Assembly was quite simple, just start with the lower profile components:

assemble1ss

 

… then mount the LCD and the larger components:

assemble2ss

… the switches and others – and we’re done:

finishedsolderingss

The only problem at this point was the PCB holes for the selector switch, one hole was around 1mm from where it needed to be. Instead of drilling out the hole, it was easier to just bend up the legs of the switch and keep going:

switchlegsss

At this stage one has to cut out two supports from the enclosure, which can be done easily. Then insert the PCB and solder to the sockets and power (9V battery snap). Initial testing was successful (after adjusting the LCD contrast…

inittestss

If you look at the area of PCB between the battery and the left-hand screw there are eight pins – these are four pairs of inputs used to help calibrate and check operation of the meter. For example, by placing a jumper over a pair you can display the oscillator frequency at various stages:

calibrationss

Furthermore, those links can also be used to fine-tune the meter. For example one can increase or decrease the scaling factor and the settings are then stored in the EEPROM within the microcontroller. However my example seemed ok from the start, so it was time to seal up the enclosure and get testing. Starting with a ceramic capacitor, the lowest value in stock:

3p9pfss

Spot-on. That was a good start, however trying to bend the leads to match the binding posts was somewhat inconvenient, so I cut up some leads and fitted crocodile clips on the end. The meter’s zero button allows you to reset the measurement back to zero after attaching the leads, so stray capacitance can be taken into account.

Next, time to check the measurement with something more accurate, a 1% tolerance silvered-mica 100 picofarad capacitor:

99pfss

Again, the meter came through right on specification. My apologies to those looking for inductor tests – I don’t have any in stock to try out. If you are really curious I could be persuaded to order some in, however as the capacitance measurement has been successful I am confident the inductance measurement would also fall within the meter’s specifications.

As shown earlier, there were two smaller PCBs included:

pcbadaptorsss

The top PCB is a shorting bar used to help zero the inductance reading, and the lower PCB is used to help measure smaller capacitors and also SMD units. A nice finishing touch that adds value to the meter. The only optional extra to consider would be a set of short leads with clips or probes to make measurement physically easier.

When reading this kit review it may appear to be somewhat positive and not critical at all. However it really is a  good instrument, considering the accuracy, price, and enjoyment from doing it yourself. It was interesting, easy to build, and will be very useful now and in the future. So if you are in the market for an LC meter, and don’t mind some work – you should add this kit to your checklist for consideration. It is available from our store – Tronixlabs.com

 

visit tronixlabs.com

… which along with being Australia’s #1 Adafruit distributor, also offers a growing range and Australia’s best value for supported hobbyist electronics from DFRobot, Freetronics, Seeedstudio and much much more.

As always, have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website.

Posted in K2533, kit review, LC meter, test equipment, tronixlabs18 Comments

Kit review – Evil Mad Science Larson Scanner

Hello readers

Time yet again for another kit review. Today’s kit is the Larson Scanner from Evil Mad Science. What a different name for a company; their byline is “DIY and open source hardware for art, education and world domination”. Art? Yes. Education? Definitely. World domination? Possibly – you could use the blinking LEDs to hypnotise the less intelligent world leaders out there.

Anyhow, what is a Larson Scanner? Named in honour of Glen A. Larson the creator of television shows such as Battlestar Galactica and Knight Rider – as this kit recreates the left and right blinking motion used in props from those television shows. For example:

The kit itself is quite inexpensive, easy to assemble – yet can be as complex as you want it to be. More about that later, for now let’s put one together and see how it performs. There are two versions of the kit, one with 5mm clear LEDs and our review model with 10mm diffused red LEDs. The kit arrives inside a huge resealable anti-static bag, as such:

1ss

Upon opening the bag we have the following parts (there was an extra LED and resistor, thanks):

4ss

… the PCB:

3ss

… which is nicely done with a good silk-screen and solder mask. And finally:

5ss

A very handy item – a battery box with power switch. The kit is powered by 2 x AA cells (not included!). And finally, the instructions:

2ss

At this point you can see that this kit is designed for the beginner in mind. The instructions are easy to read, clear, and actually very well done. If you are looking for a kit to get someone interested in electronics and to practice their soldering, you could do a lot worse than use this kit. Construction was very easy, starting with the resistors:

6ss

followed by the capacitor and button:

7ss

then the microcontroller:

8ss

… no IC socket. For a beginners’ kit, perhaps one should have been included. Next was the battery box. Some clever thinking has seen holes in the PCB to run the wires through before soldering into the board – doing so provides a good strain relief for them:

9ss

… and finally the LEDs. Beginners may solder them in one at a time:

10ss

however it is quicker to line them up all at once than solder in one batch:

11ss

… which leaves us with the final product:

13ss

Operation is very simple – the power switch is on the battery box. The button on the PCB controls the speed of LED scrolling, and if held down switches the brightness between low and high. Now for some action video of the Larson Scanner in operation:


Well that really was fun, a nice change from the usual things around here.

But wait, there’s more… although the Larson Scanner is a good training kit, it can also function in other interesting ways. The kit is completely open-source, you can download the PCB layout file, circuit schematic and microcontroller code. Get two or more and link them together to make a really wide LED display – expansion instructions are available from here. If you solder in a 6-pin PCB header to the area marked J1 on the PCB, you can reprogram the microcontroller using an STK500-compatible programmer.

After sitting my Larson Scanner next to the computer tower for a few minutes, I had contemplated fitting it into a 5.25″ drive bay to make my own Cylon PC, however that might be a little over the top. However my PC case has some dust filters on the front, which would allow LEDs to shine through in a nicely subdued way. Mounting the Larson Scanner PCB inside the computer case will be simple, and power can be sourced from the computer power supply – 5V is available from a disk drive power lead.

If you are going to modify your PC in a similar fashion, please read my disclaimer under “boring stuff” first.

The Larson Scanner can run on 3.3V without any alteration to the supplied components. What needs to be done is to use a voltage regulator to convert the 5V down to 3.3V. My example has used a 78L33 equivalent, the TI LP2950 as it is in stock. The power comes from a drive power cable splitter as such:

splitss

You may have a spare power plug in your machine, so can tap from that. 5V is the red lead, and GND is the adjacent black lead. Don’t use yellow – it is 12V. It is then a simple matter of running 5V from the red lead to pin 1 of the regulator, GND from the Larson Scanner and PC together to pin 2, and 3.3V out from the regulator to the PCB 3.3V. Insulation is important with this kind of work, so use plenty of heatshrink:

ldo1ss

… then cover the whole lot up:

ldo2ss

Now to locate a free power plug in the machine. It has been a while since opening the machine – time for a dust clean up as well:

ldo3ss

Mounting the PCB is a temporary affair until I can find some insulated mounting  standoffs:

ldo4ss

However it was worth the effort, the following video clip shows the results in action:


So there you have it. The Larson Scanner is an ideal kit for the beginner, lover of blinking LEDs, and anyone else that wants to have some easy blinking fun. You can buy Larson Scanner kits in Australia from Little Bird Electronics, or directly from Evil Mad Science for those elsewhere.

As always, thank you for reading and I look forward to your comments and so on. Furthermore, don’t be shy in pointing out errors or places that could use improvement. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts, follow me on twitter or facebook, or join our Google Group for further discussion.

High resolution images are available on flickr.

[Note – The kit was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

Posted in evil mad science, kit review, larson scanner, learning electronics, tutorial0 Comments

Kit review – Freeduino v1.22 Arduino-compatible

Hello readers

Time again for another kit review. Today we will examine the Freeduino Arduino Duemilanove-compatible board in a kit. It is always interesting to see how the different types and makes of Arduino-compatible boards present themselves, so this is review is an extension of that curiosity. This kit was originally designed by NKC Electronics and released under a Creative Commons license.

The packaging can either be classed as underwhelming or environmentally-friendly, as the kit arrives in several plastic resealable bags. Upon emptying them out we are presented with the following, the parts:

partsss

and the PCB:

pcbss1

Hopefully you noticed what ends up being the key features of this kit – the pre-soldered FTDI IC and mini-USB socket. This means the Freeduino can be used with a USB cable (not included) and not an expensive FTDI cable. The PCB itself is very solid, has a very descriptive silk-screen layer with all the component positions labelled, is solder-masked, and has nice rounded corners.

Reviewing the included parts did make me wonder why the supplier has used 5% carbon-film resistors and ceramic capacitors instead of polyesters (except for one). It turns out that Seeedstudio (the distributor for my example kit) claim 5% resistors are easier to read. Originally I claimed that this was an excuse to save a few cents, however a few people have said that such resistors are easier to read.

Furthermore, this one missed out on the polyfuse for USB overcurrent and short-circuit protection. And whether or not the larger tolerances affect the operation of the board, the cheaper components make the finished product look very 1977. However on a brighter note, an IC socket is included.

Assembly was quick and simple, and you can also follow the silk-screen labels on the PCB as well. A good method is to start with the lowest-profile components, such as resistors and capacitors:

solder2ss

… then followed by the capacitors, crystal, LEDs and reset button:

solder3ss

Notice how the ceramic capacitors lead-spacing is too narrow for the holes on the PCB – this makes me think that the distributor has skimped out on the final product and been too lazy to update the PCB layout. The ATmega168 label is an example of this. Moving forward, the voltage regulator and sockets. The easiest way to solder in the shield sockets is to place them into the pins of an Arduino shield and solder – as such:

solder4ss

And there you have it, one Freeduino v1.22 Arduino Duemilanove-compatible board:

finishedss1

The image above also displays another bugbear with this kit – the LED placement. When you have a shield inserted, all of the LEDs are covered up. Furthermore, unlike other Arduino board kits you are stuck with the maximum current output of 50mA for the 3.3V rail as there isn’t a dedicated 3.3V voltage regulator on board. Finally, the power switching between USB and the DC socket is controlled with a jumper and header pins between the USB socket and the 7805 voltage regulator.

Although I might have sounded a little harsh about this kit, it is relatively inexpensive, easy to assemble, and has the USB interface onboard. These are all good things. However the PCB layout could have been improved by correctly spacing the holes for the ceramic capacitors, and moving the LEDs to the end of the board so they are visible with shields inserted. What’s the point of having all those LEDs if you cannot see them…

So if you really get the urge to make your own board with the USB interface, or want to give someone some reasonable soldering practice, this isn’t a bad choice at all. High resolution images are available on flickr. You can order your own Freeduino from Tronixlabs.

And finally a plug for my own store – tronixlabs.com – offering a growing range and Australia’s best value for supported hobbyist electronics from adafruit, DFRobot, Freetronics, Seeed Studio and much much more.

visit tronixlabs.com

As always, have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website.

Posted in ARD107B1P, arduino, freeduino, kit review, microcontrollers, tronixlabs, tronixstuff7 Comments

Kit review – Current Clamp Meter Adaptor

Hello readers

Time for another kit review. Over the last few days I have been enjoying assembling a useful piece of test-equipment – a Current Clamp Meter adaptor. This kit was originally described in the September 2003 issue of Silicon Chip magazine. The purpose of this adaptor is to allow the measurement of AC current up to around 600 amps and DC current up to 900 amps. A clamp meter is a safe method of measuring such high currents (which can end you life very quickly) as they do not require a direct connection to the wire in question. As you would realise even a more expensive type of multimeter can only safely measure around ten amps of current, so a clamp meter becomes necessary.

To purchase a clamp meter can be expensive, starting from around $150. Therein lies the reason for this kit – under $30 and a few hours of time, as well as a multimeter that can measure millivolts DC/AC.

How the adaptor works is quite simple. It uses a hall-effect sensor to measure magenetic flux which is generated by the current flowing through the wire being measured. The sensor returns a voltage which is proportional to the amount of magnetic flux. This voltage is processed via an op-amp into something that can be measured using the millivolts AC/DC range of a multimeter. As the copyright for the kit is held by Silicon Chip magazine, I cannot give too much away about the design.

You can purchase a complete kit from Tronixlabs, or build one yourself by following the article in the magazine.  The hall effect sensor UGN3503 is now out of production, but according to the data sheet (.pdf), the Allegro A1302 is a drop-in replacement.

Now, time to get started. To make life easier I forked out for the whole kit, which arrived as below:

bagofpartsss

Upon opening the bag up, one is presented with the following parts:

parts1ss

parts2ss

It is great to see everything required included with a kit. And the extra battery-clamp is a nice bonus. As usual an IC socket was not included, however these can be had for less than five cents each… so I have recently solved that problem by importing a few hundred myself. The hall effect sensor is very small; considering the graph paper below is 5mm square:

hallsensorss

The PCB was very well done – to a degree. The solder-mask and silk-screening was up to standard:

pcbss

… however a few holes needed some adjustment. Doing a component test-fit before soldering really paid off, as none of the holes for the PCB pins were large enough to accept the pins, and one of the sensor socket holes needed some modification:

holedrillss

A small hand-held drill is always a handy thing to have around. Once those errors were taken care of, actually soldering the components to the PCB was simple and took less than ten minutes. The potentiometer VR3 needed to be elevated by 3.5mm so it would fit through the enclosure panel in line with the power switch. As I couldn’t use PCB pins, a few link offcuts from the resistors worked just as well. When soldering the components, start with the low-profile items such as resistors, and finish with the switch and potentiometer:

pcbsolderedss

Now it was time to make the clamp. First up was to cut the iron-powdered toroidal core in half. All I had to do this with was a small hacksaw, so I hacked away at it for about half an hour. This process will make a mess, filings will go everywhere. So you will need some pointless rubbish to catch the filings with:

rubbishss

Each half of the core is placed inside the clamp. Until I am completely happy with the clamp they will be held in with blutac. A lead also needs to be constructed, with the sensor at one end and the 3.5mm stereo plug at the other. Some heatshrink is provided to cover the ribbon cable, but I recommend placing some over the solder joints where the sensor meets the ribbon cable, as such:

clampleadss

Next, the sensor needs to be placed between the two halves of the core – however a piece of plastic slightly thicker needs to sit next to the sensor, to stop the clamp damaging the sensor by closing down on it. Then, using the continuity function of a multimeter, check that there aren’t any shorts in the lead. Feed the newly-constructed lead through the battery clamp in order to keep things relatively neat and tidy, and you should result with something like this:

clampdoness

As you can see I have had a few attempts at cutting the core. The next step was to drill the holes for the enclosure, and then solder the wires that run from the PCB, run them through the hole in the side of the enclosure, and fasten the banana plugs to plug into the multimeter.

Now it was time to start calibration. There are two stages to this, and both are explained well in the instructions. This involves adjusting the trimpots which control the output voltage in millivolts, which can be affected by charge in the human body. Therefore it is recommended to use a plastic screwdriver/trimming tool to make the adjustments:

plasticsdriver

They are generally available in a set or pack for a reasonable price. The second stage of calibration involves creating a dummy DC current load using a 12v power supply, 5 metres of enamelled copper wire and a 18 ohm 5 watt resistor:

clampdoness

By putting 100 turns of the copper wire around one side of the clamp, putting the resistor in series and looping it into 12 volts, the current drawn will be 0.667 amps. (Ohm’s law – voltage/resistance = current). Then it is a simple task to set the multimeter to millivolts DC and adjust potentiometer VR1 until it displays 66.7 mA:

calibratedss

So there you have it – 66.7 millivolts on the multimeter represents 660 milliamps of current. So 1 amp of current will be 100 millivolts on your multimeter. Excellent – it works! The whole mess was inserted into the enclosure, and I was left with something that looked not terribly unprofessional (time to invest in a label-maker):

finishedss

It turns out that the thick OFC cable and the battery wouldn’t be able to coexist in the enclosure, so the battery is external.

The current clamp meter kit was an interesting and satisfying kit to assemble. Originally I assumed it would be simple, but it required plenty of drilling, cutting the darn toroid in half, tricky soldering for the clamp lead, and some patience with lining up the holes for the enclosure. Not a kit for the raw beginner, but ideal for teaching with a beginner to improve their assembly skills, or anyone with some experience. Plus it really does work, so money has been saved by not having to buy a clamp meter or adaptor.

You can order your own kit directly from our store at tronixlabs.com. High resolution images are available on flickr.

Finally, check out tronixlabs.com – which along with being Australia’s #1 Adafruit distributor, also offers a growing range and great value for supported hobbyist electronics from Altronics, DFRobot, Freetronics, Jaycar, Seeedstudio and much much more.

visit tronixlabs.com

As always, have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website.

Posted in altronics, current clamp meter, K2582, kit review, learning electronics, test equipment, tronixlabs4 Comments

Kit review – ogi lumen Nixie Tube system

Hello readers

Time to finish off the month with a fascinating kit review  – the ogi lumen nixie tube system. The younger readers amongst us may be thinking “what is a nixie tube?” Here is an example of four in a row:

p1080918

If you cast your mind back to before the time of LCDs, and before LEDs… to the mid-1950s. Nixie tubes were used to display data in various forms on electrical devices, from test equipment, scales, elevator indicators, possible doomsday machines, clocks – anything that required visual output would be a candidate. Although nixie tubes are now totally out of date, as with many things there is a growing trend to use them again, for cool retro-style, nostalgia and those people who enjoy living in the past.

How nixie tubes work is quite simple, an element is within a vacuum tube full of gas, such as neon. When a high-voltage (~190 volts DC) current flows through the element, it glows. For more information, here is a great explanation. You will note that they are similar to in look but different in design to the vacuum-fluorescent displays, as used in the ice tube clock reviewed a few months previously. The tubes used in this kit are the Soviet model IN-12A:

p1080865

The IN-12A tube can display the digits zero to nine, with a nice orange glow.  For the uninitiated, sourcing and making nixie tubes can be quite difficult. Apart from procuring the tubes themselves, you need a suitable power supply and logic ICs that can handle the higher voltage to control the tubes. Thankfully Ogi Lumen have put together a system of kits to make using these nixie tubes simple and interesting. There are three components to the system, the first being the power supply:

p1080879

Note that the power supply is preassembled. This supply can generate the necessary 150 to 220 volts DC to energise our nixie tubes. Yes – up to 220 volts! For example:

p1080922

However the current required is quite small – one power supply can handle up to twenty-four IN12A nixie tubes. My example in the photograph above is drawing 110~120 milliamps from a 12V DC supply. For those of you assembling these kits, please be careful. It can be easy to physically move the kit about whilst in operation, and touching the live HV pads will hurt a lot. After bumping the HV line on the PCB, my whole left arm went into a spasm and hurt for the time it took to see my doctor. So be careful.

The second item required is the driver kit. This is a board that takes care of the shift-registers and power for two of the nixie tubes. Driver kits can be slotted together to form a row of nixie tubes. The third and final item is the nixie duo kit. This contains two IN-12A tubes, matching sockets and a PCB to muont them. This PCB then slots into the driver kit PCB. You can buy the driver and duo kit as a set for a discount.

From a hardware perspective, assembling the kits is relatively simple. There isn’t any tricky soldering or SMD to worry about, however you will need a lot of solder. The contents of the duo and driver kits are as follows:

p1080869

Before you start soldering, please download and take note of the instructional .pdf files available for the duo and driver board kits. Assembling the driver kit (on the right) is very straight forward. However – please read the instructions! An interesting part of note is the K155ИД1IC:

p1080872

This is the Russian equivalent of the 74141. This is a BCD-decimal decoder IC that can handle the high voltages required for nixie tubes. When soldering the resistors, take care with R2 – it will need to be positioned horizontally so as to not rub against the duo board:

p1080934

When it is time to assemble the duo board, you will need time and patience. At a first glance, one would imagine that the sockets drop into the PCB, and the nixie tubes will happily be seated into the sockets. This is not so, don’t solder in the sockets first! The pins on the bottom of the socket also form part of the socket for the tube legs – which can alter the positioning of the socket legs. Make sure you have the socket with pin 1 at the top of the PCB. After some trial and error, the best way to insert the tubes is to first partially place the sockets into the PCB:

p1080880

… then fully insert the tubes into their sockets. Make sure the tube is the right way up – check that the digit 3 in the tube is the right way up. Then push the whole lot into the PCB. At this point you should check to make sure the sockets are in line with each other:

p1080892

(Notice how thick the PCB is…) At which point you can solder them in, followed by the row of connector pins:

p1080896

By this stage you will need some fresh air from all that soldering. The PCB holes for the socket pins really take a lot. Now you can connect the power supply to the driver board and give the tubes a test-toast:

p1080941

All the tubes should have their elements glowing. This is a good start. The next step is to connect the appropriate microcontroller and start displaying. As noted in the instructions, the 74141 BCD-decimal ICs are controlled by standard 74HC595 shift-register ICs, so your microcontroller needs to send out a data, clock and latch line. My following examples have been created using the Ardiuno system and a compatible board.

The first example is a method of displaying integers. It uses the Nixie library which you can download here.

That was just an arbitrary demonstration to get some numbers displayed. Here is a short video clip of it in action:

Now for another, more useful example. By using a DS1307 real-time clock IC with the Arduino, we can make a nice clock that displays the time and date. For more information on using the DS1307 with Arduino, please visit this tutorial. You can download the example nixie clock .pde file from here. And finally, here is the clock in action:

The problem with these tubes is that you will never have enough. Already I have thought of a few things to make that require a lot more tubes, so in the next month or so stay tuned to tronixstuff.com as there will be more projects with these kits.

In conclusion, this was a great kit and anyone looking to use some numerical nixie tubes will do very well with the Ogi Lumen products. Furthermore the designs are released under Creative Commons by-sa-nc, and the files are available to download from the product pages. And finally, it is a lot of fun – people will generally ask you about the tubes as they may have never seen them before.

Remember, if you have any questions about these modules please contact Ogi Lumen via their website. Higher resolution images available on flickr.

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

[Note – the kit assembled in this article was received from Ogi Lumen for review purposes]

Posted in arduino, kit review, learning electronics, nixie, ogilumen11 Comments

Kit Review – MDC Bare-bones Board Kit (Arduino-compatible)

Hello readers

Today we continue to examine Arduino-compatible products by assembling an interesting kit from Modern Device Company – their “Bare Bones Board” (to be referred to as BBB). The BBB kit is an inexpensive way to take advantage of the Arduino Duemilanove-compatible platform, and also fills some gaps in the marketplace. Unlike the usual Arduino and compatible boards, the BBB does not maintain the recognisable form factor – that is, you cannot use the variety of Arduino shields. However, the BBB does have all the input and output connections, just in different positions.

So why would you use this kit? If you are looking to create a more permanent Arduino-based project that did not require a shield, and you are in a hurry – the BBB could be easily integrated into your design. Money is saved by not having the usual USB connection, so uploading your sketch is achieved using a 5V FTDI cable or using another Arduino board as the programmer.

Furthermore, the PCB is designed in a way that allows you to plug the BBB into the side of a solderless breadboard, which allows prototyping more complex Arduino-based circuits very easy. But more about that later. For now, let’s have a look at construction. An excellent set of instructions and a guide to use is available for download here.

In the spirit of saving money, the kit arrives in a plastic bag of sorts:

packagingss1

And upon emptying the contents, the following parts are introduced:

partsss2

Regular readers would know that the inclusion of an IC socket makes me very happy. The PCB is thicker than average and has a great silk-screen which makes following instructions almost unnecessary. One of the benefits of this kit is the ability to connect as little or as many I/O or programming pins as required.

And for the pins A0~A5, 5V, GND and AREF you are provided with header pins and a socket, allowing you to choose. Or you could just solder directly into the board. These pins are available on the bottom-left of the PCB. However there was one tiny surprise included with the parts:

rawinductor

This is a 15uH SMD inductor, used to reduce noise on the analog/digital section. According to the instructions, this was originally required with Arduino-style boards that used the ATmega168 microcontroller – however the BBB now includes the current ATmega328 which does not require the inductor. However, it is good to get some SMD practice, so I soldered it in first:

solder1ss1

Well it works, so that was a success. Soldering the rest of the main components was quite simple, thanks to the markings on the PCB. The key is to start with the lowest-profile (height) components (such as that pesky inductor) and work your way up to the largest. For example:

solder2ss1

As you can see from the PCB close-up above, you can have control over many attributes of your board. Please note that the revision-E kit does include the ATmega328 microcontroller, not the older ‘168. For more permanent installations, you can solder directly into I/O pins, the power supply and so on.

Speaking of power, the included power regulator IC for use with the DC input has quite a low current rating – 250 mA (below left). For my use, this board will see duty in a breadboard, and also a 5V supply for the rest of the circuit, so more current will be required. Thankfully the PCB has the space and pin spacing for a 7805 5V 1A regulator (below right), so I installed my own 7805 instead:

regulators

Finally, to make my Arduino-breadboarding life easier I installed the sockets for the analogue I/O, the DC socket and a row of header pins for the digital I/O. Below is my finished example connected into a breadboard blinking some LEDs:

finishedonbbss

In this example, the board is being powered from the 5V that comes along the FTDI cable. If doing so yourself, don’t forget that there is a maximum of 500 mA available from a USB port. If you need more current (and have installed the 7805 voltage regulator) make use of the DC socket, and set the PCB power select jumper to EXT. For a better look at the kit in action, here is a short video clip:

As you can see from the various angles shown in the video, there are many points on the PCB to which you can use for power, ground, I/O connection and so on. As illustrated at the beginning of this article, a variety of header pins are included with the kit. And please note that the LED on the board is not wired into D13 as other Arduino-type boards have been… the BBB’s LED is just an “on” indicator.

However if you are using this type of kit, you most likely will not need to blink a solitary LED. However some people do use the D13 LED for trouble-shooting, so perhaps you will need it after all. Each to their own!

In conclusion, the BBB is another successful method of prototyping with the Arduino system. The kit was of a good quality, included everything required to get working the first time, and is quite inexpensive if you have a 5V FTDI cable or an Arduino Duemilanove/Uno or compatible board for sketch uploading.

Once again, thank you for reading this kit review, and I look forward to your comments and so on. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts, and if you have any questions – why not join our Google Group? It’s free and we’re all there to learn and help each other.

High resolution photos are available on flickr.

[Note – this kit was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

Posted in arduino, bare bones board, kit review, learning electronics, microcontrollers, modern devices4 Comments

Kit review: Freetronics KitTen Arduino-compatible board

Hello everyone

Within this article we are going to examine another new kit available from Freetronics, a company formed to provide many interesting Arduino-based products after the publication of the book “Practical Arduino” by Jonathan Oxer and Hugh Blemings – which in itself is a good read, there are many interesting projects to make and learn from.

Today we examine their answer to “is there a kit version of the TwentyTen Arduino Duemilanove-compatible board?” – by assembling their KitTen. Some people may be wondering why one would want to build a KitTen instead of an assembled unit. Personally I could think of the following reasons:

  • It’s fun to make something and see it work;
  • You can save over Au$10;
  • There are a lot more smoothing capacitors in the KitTen design than normal boards;
  • There is a dedicated 3.3V 100 milliamp power regulator (twice the current of the usual board’s 50mA supply)  – ideal for running thirsty shields that need a native 3.3V;
  • The board is for a project that needs to use a modified version of the TwentyTen/Duemilanove;
  • You want a board with a native serial instead of USB interface;
  • All that lovely prototyping area above the microcontroller;
  • The power light and LED for D13 are always visible due to their location on the edge of the PCB;
  • You could solder in your microcontroller to avoid theft – great for school and public use (Yes, this has happened)…

And so on. Moving forward, opening the KitTen package reveals the following:

contents1ss

Once again with a Freetronics kit, all instructions are included in colour, as well as the circuit schematic and another sheet explaining how the KitTen will work with Arduino systems and the specifications. The PCB is solder-masked and silk-screened with a very informative layout:

pcbss1

The rest of the included components shipped in an anti-static bag, including labelled resistors and an IC socket for the microcontroller:

contents2ss

By following the included detailed instructions, everything went well. The layout on the PCB is detailed with all component values, which makes life easier. Starting with the low-profile components:

solder1ss

… followed by higher-profile components such as the IC socket and capacitors:

solder2ss

… and finally the shield sockets. Instead of trying to balance them, it is a lot quicker to place the sockets on an existing Arduino shield, turn it over, drop the KitTen on top then solder the pins in:

solder3ss

Then finally we are finished:

finishedss1

There are a couple of things to watch out for when using your KitTen. The first is to make sure you have the power-select jumper fitted correctly:

powerselectjumperss

Place it on the left pins (as above) to power your KitTen from the FTDI cable; place the jumper on the right pins to power from the DC socket. You should use a power supply of between 9 to 12 volts DC at one amp. The second item to take care with is the blue power LED. The supplied model was so bright it was like staring into the sun. You may wish to test your own one and possibly replace it for a duller version, or use some fine sandpaper to reduce the brightness of the included LED. To upload sketches to your KitTen you will need a 5 volt FTDI cable. As mentioned above, this can also power your board as well.

Overall, this is an excellent kit, and considering the price of doing it yourself – good value as well. To get your hands on this product– visit Freetronics’ website, or your local reseller.

Remember, if you have any questions about these modules please contact Freetronics via their website.

Higher resolution images available on flickr.

[Note – the kit assembled in this article was received from Freetronics for review purposes]

Posted in arduino, kit review0 Comments

Kit review: Freetronics 16×2 LCD Arduino Shield

Hello everyone

This kit has now been discontinued, however Freetronics now have a great LCD+Keypad Shield.

Today we examine their latest kit, the “16×2 LCD Arduino Shield“. This is a very easy to construct, yet useful tool for those experimenting, prototyping and generally making things with their Arduino-based systems.  The purpose of the shield is to offer easy access to a 16 x 2 character LCD module, and also the use of five buttons – connected to an analog input using the resistor ladder method. The kit comes packaged very well, and includes not only detailed printed instructions in colour, but also the full circuit schematic:

contentsss

It is nice to see such a high level of documentation, even though most people may not need it – there is generally someone who does. Sparkfun – get the hint. All the parts are included, and for the first time in my life the resistors were labelled as well:

partsss1

So being Mr Pedantic I followed the instructions, and happily had the components in without any troubles. The next step was the Arduino shield pins – the best way to solder these is to insert into your Arduino board, drop the shield on top then solder away as such:

shieldpinsss

And finally, bolting on the LCD whilst keeping the header pins for the LCD in line. Some people may find the bolt closest to D0 interferes with the shield pin, so you can insert the bolt upside down as I have. Remember to not solder the LCD pins until you are happy it is seated in correctly:

lcdtopcbss

Once you are satisfied the pins are lined up and sitting in their required position – solder them in, tighten your nuts and that’s it:

finishedss

The contrast of the LCD in real life is better than shown in the photo above – photographing them is a little difficult for me. However once assembled, using the shield is quite easy. If your LCD doesn’t seem to be working after your first sketch, adjust the contrast using the potentiometer. The LCD is a standard HD44780-interface model, and wired in to use a 4-bit parallel data interface. If using these types of LCD is new to you, perhaps visit this article then return. Our shield uses the pins: A0 and D4~D9.

One uses the standard Arduino liquidCrystal library with this LCD, and the function parameters to use are as follows:

The buttons are read using analog pin A0. Use the following sketch to find the values returned by the analogRead function:

and a quick video of this in action:

Now that we know the values returned for each button, we can take advantage of them to create, for example, a type of menu system – or some sort of controller. In the second example, we have used a modified TwentyTen with a DS1307 real-time clock IC to make a digital clock. The buttons on the LCD shield are utilised to create a user-friendly menu to set the clock time.

You can download the demonstration sketch from here.

In general this is an excellent kit, and considering the price of doing it yourself – good value as well. To get your hands on this product in kit or assembled form – visit Freetronics’ website, or your local reseller.

Remember, if you have any questions about these modules please contact Freetronics via their website. Higher resolution images available on flickr.

[Note – the kit assembled in this article was received from Freetronics for review purposes]

Posted in arduino, kit review, LCD6 Comments

Kit review – Sparkfun Frequency Counter kit

Hello everyone

Today we examine a kit that is simple to construct and an interesting educational tool – the Sparkfun Frequency Counter kit. This is a revised design from a kit originally released by nuxie1 (the same people who brought us the original function generator kit). As a frequency counter, it can effectively measure within the range of 1 to a claimed 6.5 MHz. Unfortunately the update speed and perhaps accuracy is limited by the speed of the microcontroller the kit is based upon – the Atmel ATmega328. Arduino fans will recognise this as the heart of many of their projects.

Interestingly enough the kit itself is a cut-down version of an Arduino Duemilanove-standard board, without the USB and power regulation hardware. The ATmega328 has the Arduino bootloader and the software (“sketch”) is open source (as is the whole kit) and easily modifiable. This means you can tinker away with your frequency counter and also use your kit as a barebones Arduino board with LCD display. More about this later.

This becomes more obvious when looking at the PCB:

pcbss

It was a little disappointing to not find any power regulator or DC socket – you need to provide your own 5V supply. However Sparkfun have been “clever” enough to include a cable with JST plug and socket to allow you to feed the frequency counter from their function generator kit. In other words, buy both. Frankly they might as well just have produced a function generator with frequency counter kit all on one PCB. Anyhow, let’s get building.

The kit comes in a nice reusable stiff red cardboard box. One could probably mount the kit in this box if they felt like it. The components included are just enough to get by. The LCD is a standard 16 x 2 character HD44780-compatible display. (More on these here). It has a black on green colour scheme. You could always substitute your own if you wanted a different colour scheme:

partsss

An IC socket is not included. You will need to install one if you intend to reprogram the microcontroller with another Arduino board.

Assembly was quick and painless. I couldn’t find any actual step-by-step instructions on the internet (Sparkfun could learn a lot from adafruit in this regard) however the component values are printed on the PCB silk-screen; furthermore no mention of LCD connection, but the main PCB can serve as a ‘backpack’ and therefore the pins line up.

To make experimenting with this kit easier I soldered in some header pins to the LCD and matching socket to the main PCB; as well as adding pins for an FTDI cable (5V) to allow reprogramming direct from the Arduino IDE:

lcdsocketss

So there are in fact two ways to reprogram the microcontroller – either pull it out and insert into another Arduino board, or do it in-place with a 5V FTDI cable. Either way should be accessible for most enthusiasts. At this point one can put the screen and LCD together and have a test run. Find a nice smooth 5V DC power source (from an existing Arduino is fine), or perhaps plug it into USB via a 5V FTDI cable – and fire it up:

itworksss

Well, that’s a start. The backlight is on and someone is home. The next step is to get some sort of idea of the measurement range, and compare the accuracy of the completed kit against that of a more professional frequency counter. For this exercise you can observer the kit and my Tek CFC-250 frequency counter measuring the same function generator output:

As you can see the update speed isn’t that lively, and there are some discrepancies as the frequencies move upward into the kHz range. Perhaps this would be an example of the limitations caused by the CPU speed. Next on the to-do list was to make the suggested connection between the function generator kit and the frequency counter. This is quite simple, you can solder the included JST socket into the function generator board, and solder the wires of the lead included with the frequency counter as such:

boardsss

When doing so, be sure to take notice about which PCB hole is connected to which hole, the colours of the wire don’t match the assumed description on the function generator PCB. Furthermore, the voltage applied via the WAVE pin (the frequency source) should not fall outside of 0~+5V.

As mentioned earlier, this kit is basically a minimalist Arduino board, and this gives the user some scope with regards to modification of the software/sketch. Furthermore, the kit has been released under a Creative Commons by-sa  license. So you can download the schematic, Arduino sketch and EAGLE files and create your own versions or updates. If doing so, don’t forget to attribute when necessary.

Overall, this was anther interesting and easy kit to assemble. It is ideal for beginners as there isn’t that much soldering, they end up with something relatively useful, and if you have a standard Arduino Uno or similar board you can upgrade the firmware yourself.

However as a standalone frequency counter, perhaps not the best choice. Think of this kit as an educational tool – involving soldering, Arduino programming and learning how frequency counters work. In this regard, the kit is well suited.

As always, thank you for reading and I look forward to your comments and so on. Furthermore, don’t be shy in pointing out errors or places that could use improvement. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts. Or join our Google Group.

High resolution images are available on flickr.

[Note – The kit was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

Posted in arduino, kit review, KIT-101402 Comments

Kit Review – adafruit industries Ice Tube clock v1.1

Hello readers

Today we examine a kit that perhaps transcends from general electronic fun and games into the world of modern art – the adafruitIce Tube” clock.

What is an Ice Tube clock? Before LCDs (liquid-crystal displays) were prevalent another form of display technology was popular – the vacuum-fluorescent display (or VFD). This clock uses a VFD originally manufactured in the former Soviet Union (link for the kids) or Russia (I think mine is date-stamped January 1993). This particular VFD contains a series of seven-segment digits and a dot, which allow the display of time in a bright and retro fashion.

Since this kit was released I had always desired one, however my general parsimonious traits and the wavering exchange rate against the US dollar kept my spending in check. But lately my wallet was hit by a perfect storm: the Australian dollar hit parity with the greenback, adafruit had a discount code and I felt like spending some money – so before the strange feelings passed I ordered a kit post-haste.

Sixteen slow, hot days later the box arrived. I must admit to enjoying a good parcel-opening:

packagingss

As always, the packaging was excellent and everything arrived as it should have. But what was everything?

boxcontentsss

Included is the anti-static bag containing the PCB and general components, a bag with the laser-cut acrylic pieces to assemble the housing, another bag with the housing fasteners and the back-up coin cell for the clock, a mains adaptor, and finally another solid cardboard box containing the classic display unit – albeit with the following sensible warning:

warningss

And finally the Russian IV-18 display tube:

tuberulerss

The tube is a fascinating piece of work, certainly a piece of perfect retro-technology and a welcome addition to my household. Assembling the clock will not be a fast process, and in doing so I recommend reviewing the detailed instructions several times over at the adafruit website. Furthermore, it is a good idea to identify, measure and line up the components ready for use, to save time and confusion along the way. Your experience may vary, however this kit took around three hours for me to construct.

Normally with most kits you can just solder the components in any order, however it is recommended you follow the instructions, as they are well written and allow for testing along the way. For example, after installing the power regulator, you can check the output:

firsttestss

At this stage, you can test your progress with the piezo beeping at power-on:

pcb2ss

These mid-construction tests are a good idea as you can hopefully locate any problems before things get out of hand. Another item to be careful with is the PLCC socket for the Maxim MAX6921 VFD driver IC (second from the left):

pcb3ss

However with time and patience there is no reason why you would have any problems. Once the main PCB is completed, the next item is the end PCB which connects to the VFD:

endpcbss

At this point it is a good time to have a break and a bit of a stretch, as you need all your patience for soldering in the VFD. Before attempting to do so, try and carefully straighten all the wires from the VFD so they are parallel with each other. Then using the adafruit instructions, make sure you have the tube wires lined up with the correct hole on the PCB:

endpcb2ss

After I had the leads through the correct holes on the PCB, trimming the leads made things easier:

endpcb3ss

It is also a good idea to check the gap between the VFD and the PCB is correct, by checking the fit within the housing:

testfitss

And after much patience, wire pulling with pliers, and light soldering –  the VFD was married to the PCB:

endpcb4ss

So now the difficult soldering work has been completed and now it was time for another test – the big one… does it all work?

alivess

Yes, yes it does. *phew* The low brightness is normal, as that is the default level set by the software. Please note: if you run your VFD without an enclosure that you must be careful of the high voltages on the right-hand side of the PCB and also the VFD PCB. If you test your VFD in this manner, don’t forget to allow ten minutes for the voltage to return to a safe level after removing the power supply. If you have been following the instructions (I hope so!) there is some more soldering to do, after which you can put away your soldering iron.

Now to remove the liner from the acrylic housing pieces and put it all together. Be very careful not to over-tighten the bolts otherwise you will shatter the housing pieces and be cranky. If all is well, you’re finished clock will appear as such:

tothisss

The clock in use:

runningss1

And finally, our ubiquitous video demonstration:

VFDs can lose their brightness over the years, and can be difficult to replace – so if you want many, many years of retro-time it would be smart to buy an extra tube from adafruit with your kit, or a modified DeLorean.

Overall, this was an interesting and satisfying kit to assemble. Not for the beginner, but if you have built a few easier kits such as  the “TV-B-Gone” with success, the Ice Tube clock will be within your reach. Furthermore, due to the clear housing, this kit is a good demonstration of your soldering and assembly skills. High resolution images are available on flickr.

You can purchase the kit directly from adafruit industries. As always, thank you for reading and I look forward to your comments and so on. Furthermore, don’t be shy in pointing out errors or places that could use improvement. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts. Or join our Google Group.

[Note – The kit was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

Posted in adafruit, clocks, ice tube clock, IV-18, kit review, VFD3 Comments

Kit review – Sparkfun Function Generator

Hello readers

[10/09/2011 Update – It would seem that this kit has been discontinued – most likely due to the unavailability of the XR2206 function generator IC – which is a damn shame as it was a great kit. If you are ‘feeling lucky’ eBay seems to have a flood of them. Purchase at your own risk!]

Time for another kit review (anything to take the heat off from the kid-e-log!). Today we will examine the Sparkfun Function Generator kit. This is based from an original design by Nuxie and has now been given a nice thick red PCB and layout redesign. Although quite a bare-bones kit, it can provide us with the following functions:

  • sine waves
  • triangle waves
  • a 5V square wave with adjustable frequency

There are two frequency ranges to choose from, either 15~4544Hz or 4.1~659.87kHz. Your experience may vary, as these values will vary depending on the individual tolerance of your components.  The coarse and fine adjustment potentiometers do a reasonable job of adjustment, however if you were really specific perhaps a multi-turn pot could be used for the fine adjustment. With the use of a frequency counter one could calibrate this quite well.

The maximum amplitude of the sine and triangle waves is 12V peak to peak, and doing so requires a DC power supply of between 14~22 volts (it could be higher, up to 30 volts – however the included capacitors are only rated for 25V). However if you just need the 5V square-wave, or a lower amplitude, a lesser supply voltage such as 9 volts can be substituted. After running the generator from a 20V supply, the 7812 regulator started to become quite warm – a heatsink would be required for extended use. The main brains of the generator are held by the Exar XR2206 monolithic function generator IC – please see the detailed data sheet for more information.

Now what do you get? Not much, just the bare minimum once more. Everything you need and nothing you don’t …

bagpartsss

Upon turfing out the parts we are presented with:

thepartsss

Not a bad bill of materials – nice to see a DC socket for use with a plug-pack. Considering the XR2206 is somewhat expensive and rare here in the relative antipodes, an IC socket would be nice – however I have learned to just shut up and keep my own range in stock now instead of complaining. Having 5% tolerance resistors took me as a surprise at first, but considering that the kit is not really laboratory-precision equipment the tolerance should be fine. One could always measure the output and make a panel up later on.

Once again, I am impressed with the PCB from Sparkfun. Thick, heavy, a good solder mask and descriptive silk-screen:

pcbss

Which is necessary as there aren’t any instructions with the kit nor much on the Sparkfun website. The original Nuxie site does have a bit of a walk through if you like to read about things before making them. Finally, some resistors and capacitors included are so small, a decent multimeter will be necessary to read them (or at least a good magnifying glass!).

Construction was very simple, starting with the low-profile components such as resistors and capacitors:

resiscapsss

followed by the switches, terminal blocks, IC sockets and the ICs:

icsss

and finally the potentiometers:

potsss

The easiest way to solder in the pots while keeping them in line was to turn the board upside down, resting on the pots. They balance nicely and allow a quick and easy soldering job. At this point the function generator is now ready to go – after the addition of some spacers to elevate it from the bench when in use:

finishedss

Now for the obligatory demonstration video. Once again, the CRO is not in the best condition, but I hope you get the idea…


Although a very simple, barebones-style of kit (in a similar method to the JYETech Capacitance meter) this function generator will quickly knock out some functions in a hurry and at a decent price. A good kit for those who are learning to solder, perhaps a great next step from a TV-B-Gone or Simon kit. And for the more advanced among us, this kit is licensed under Creative Commons attribution+share-alike, and the full Eagle design files are available for download – so perhaps make your own? High resolution images are available on flickr.

[Note – The kit was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

 In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in education, kit review, KIT-10015, learning electronics, oscilloscope, test equipment, XR22060 Comments

Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: