Category Archives: review

First Look – Arduino M0 Pro with 32 bit ARM Cortex M0

Here at tronixstuff we keep an open mind with regards to new hardware, and in this spirit we have the following “first look” of the new Arduino M0 Pro (previously called the Arduino Zero) from Arduino SRL. If the term Arduino SRL is new to you – click here to learn more.

Arduino M0 Pro from Tronixlabs Australia 1

This is the second Arduino-branded board that takes the leap from 8-bit to 32-bit microcontrollers (with the Due being the first), and according to Arduino SRL offers a lot of promise:

With the new Arduino M0 pro board, the more creative individual will have the potential to create one’s most imaginative and new ideas for IoT devices, wearable technologies, high tech automation, wild robotics and other not yet thinkable adventures in the world of makers.

The Arduino M0 pro represents a simple, yet powerful, 32-bit extension of the Arduino UNO platform. The board is powered by Atmel’s SAMD21 MCU, featuring a 32-bit ARM Cortex® M0 core.

With the addition of the M0 board, the Arduino family becomes larger with a new member providing increased performance.

The power of its Atmel’s core gives this board an upgraded flexibility and boosts the scope of projects one can think of and make; moreover, it makes the M0 Pro the ideal educational tool for learning about 32-bit application development.
Atmel’s Embedded Debugger (EDBG), integrated in the board, provides a full debug interface with no need for additional hardware, making debugging much easier. EDBG additionally supports a virtual COM port for device programming and traditional Arduino boot loader functionality uses.

Lots of buzzwords in there, so let’s push that aside and first consider the specifications:

Microcontroller – ATSAMD21G18, 48pins LQFP – the “main” microcontroller
EDBG Microcontroller – AT32UC3A4256, 100pins VFBGA
Operating Voltage – 3.3 V
DC Input Voltage (recommended) – 6-15 V
DC Input Voltage (limits) – 4.5-20 V
Digital I/O Pins – 14, with 12 PWM and UART
Analogue Input Pins – 6, 12-bit ADC channels
Analogue Output Pins – 1, 10-bit DAC
DC Current per I/O Pin – 7 mA
Flash Memory – 256 KB
SRAM – 32 KB
Clock Speed – 48 MHz

Lots of good stuff there – increased clock speed, increased flash memory (sketch space) and SRAM (working memory). No EEPROM however you can emulate one.

Note that the M0 Pro is a 3.3V board – and also the DC current per I/O pin is only 7 mA. Once again the user will need to carefully consider their use of external circuitry and shields to ensure compatibility (as the “classic” Arduino boards are 5V and can happily source/sink much more current per I/O pin).

The ADC (analogue-to-digital) converters have an increased resolution – 12-bit… and the addition of a true DAC (digital-to-analogue) converter allows for a true variable voltage output. This could be useful for sound generation or other effects. You can pore over the complete details including board schematics from the arduino.org website.

Moving on, let’s have a look around the Arduino M0 Pro board itself:

Arduino M0 Pro from Tronixlabs Australia 1

You can’t miss the sticker asking you to download the IDE – as Arduino SRL have forked up the Arduino IDE and run off with it. Click here to download. Upon removing the sticker you have:

Arduino M0 Pro from Tronixlabs Australia

Note the connector for the JTAG interface which works in conjunction with Atmel Studio software for debugging. You can also use the USB connection which connects to the EDBG microcontroller (example). When Atmel offers a native MacOS version we’ll investigate that further. SPI isn’t D10~D13 as per the older boards, instead it is accessed via the six pins on the right-hand side of the board. Turning the M0 Pro over doesn’t reveal any surprises:

Arduino M0 Pro from Tronixlabs Australia 1

And like the Due there are two USB ports:

Arduino M0 Pro from Tronixlabs Australia 1

A Programming USB port for uploading sketches through the Arduino IDE and “normal” use, along with a native USB port for direct connection to the main microcontroller’s serial connection. For “regular” Arduino IDE use, you can stick with the Programming port as usual.

So let’s try out the M0 Pro. We’ve downloaded the arduino.org IDE (which can co-exist with the arduino.cc IDE). Drivers are included with the IDE for Windows users, so the board should be plug and play. Note that if you need to reflash the Arduino bootloader – Atmel Studio is required. Moving on – within the Arduino IDE you need to set the board type to “Arduino M0 Pro (Programming Port)”:

Arduino M0 Pro from Tronixlabs Australia IDE 1

… and the Programmer to “M0 Pro Programming Port”:

Arduino M0 Pro from Tronixlabs Australia port 1

… both of these options are found in the Tools menu. When using these faster boards we like to run a simple speed test that calculates Newton Approximation for pi using an infinite series, written by Steve Curd from the Arduino forum. You can download the sketch to try yourself.

In previous tests the Arduino Mega2560 completed the test in 5765 ms, and the Arduino Due crushed it in 690 ms. As you can see below the M0 Pro needed 1950 ms for the test:

Arduino M0 Pro from Tronixlabs Australia speed

Not bad at all compared to a Mega. Thus the M0 Pro offers you a neat speed bump in an Uno-compatible form-factor. At this point those of you who enjoy making your own boards and dealing with surface-mount components have an advantage – the Atmel ATSAMD21G18 is available in TQFP package for under US$6… so you could cook up your own high-performance boards. Example.

At this point I’m curious about the onboard 10-bit DAC that’s connected to pin A0, so I connected the DSO to A0 and GND, and uploaded the following sketch:

… which resulted with the following neat triangle waveform:

Arduino M0 Pro DAC fast

… and here it is with the statistics option:

Arduino M0 Pro DAC fast stats

With a frequency of 108.7 Hz there’s a lot of CPU overhead – no doubt controlling the MCU without the Arduino abstraction will result with increased performance. Finally – for some other interesting examples and “how to” guides for the M0 Pro, visit the Arduino labs page for this board.

Conclusion for now

There are many pros and cons with the Arduino M0 Pro. It is not the best “all round” or beginner’s board due to the limitations of the hardware GPIO. There’s the DAC which could be useful for creating Arduino-controlled power supplies – and plenty of PWM outputs… but don’t directly connect servos to them. However if you can live with the current limits – and need a faster clock speed with an Arduino Uno-compatible board type – then the M0 Pro is an option for you.

Furthermore the M0 Pro offers an interesting bridge into the world of 32-bit microcontrollers, and no doubt the true performance of the MCU can be unlocked by moving away from the Arduino IDE and using Atmel Studio. If you have any questions for the arduino.org team about the Arduino M0 Pro ask in their support forum.

Finally, check out tronixlabs.com – which along with being Australia’s #1 Adafruit distributor, also offers a growing range and great value for supported hobbyist electronics from Altronics, DFRobot, Freetronics, Jaycar, Seeedstudio and much much more.

visit tronixlabs.com

As always, have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website.

Review – Intel Galileo Arduino-compatible Development Board

Introduction

Over the last year or two the rise of the single-board computer has captured the imagination and energy of many people, to the point where popular opinion has been that the Arduino world had been left behind. However this is far from the truth – there’s Arduino-compatible SBCs such as the pcDuino and now we have one from Intel  – the Intel Galileo.

Intel Galileo box

Apparently the Galileo has been available in limited distribution for a few months, and now that the marketing machine has started up – we finally had the chance to order an Intel Galileo last week and now have one as the subject for this review. It’s our first look, based on information we could find at the time and some experimenting.

What’s in the box?

In the retail package we found the Intel Galileo itself:

Intel Galileo box inside

Intel Galileo

… a diagram of what to do in the lid:

Intel Galileo box inside lid

… and a universal AC to 5V 2A DC power supply with various fittings for different regions:

Intel Galileo power supply

The only paper documentation was a safety and regulatory information booklet which gets recycled. We didn’t find a USB cable nor some stand-offs to lift the board off the bench a little.

Specifications

The Galileo is based a new chipset from Intel, the Quark SoC X1000 Application Processor, a 32-bit Intel Pentium-class system on a chip. For the uninitiated, the Galileo is a single-board computer running a small version of Linux that can somewhat emulate an Arduino Uno R3 in software. The hardware specifications are as such (from the Arduino website):

  • 400MHz 32-bit Intel® Pentium instruction set architecture (ISA)-compatible processor o 16 KBytes on-die L1 cache
    • 512 KBytes of on-die embedded SRAM
    • Simple to program: Single thread, single core, constant speed
    • ACPI compatible CPU sleep states supported
    • An integrated Real Time Clock (RTC), with an optional 3V “coin cell” battery for operation between turn on cycles.
  • 10/100 Ethernet connector
  • Full PCI Express* mini-card slot, with PCIe 2.0 compliant features
    • Works with half mini-PCIe cards with optional converter plate
    • Provides USB 2.0 Host Port at mini-PCIe connector
  • USB 2.0 Host connector
    • Support up to 128 USB end point devices
  • USB Device connector, used for programming
    • Beyond just a programming port – a fully compliant USB 2.0 Device controller
  • 10-pin Standard JTAG header for debugging
  • Reboot button to reboot the processor
  • Reset button to reset the sketch and any attached shields
  • Storage options:
    • Default – 8 MByte Legacy SPI Flash main purpose is to store the firmware (or bootloader) and the latest sketch. Between 256KByte and 512KByte is dedicated for sketch storage. The download will happen automatically from the development PC, so no action is required unless there is an upgrade that is being added to the firmware.
    • Default 512 KByte embedded SRAM, enabled by the firmware by default. No action required to use this feature.
    • Default 256 MByte DRAM, enabled by the firmware by default.
    • Optional micro SD card offers up to 32GByte of storage
    • USB storage works with any USB 2.0 compatible drive
    • 11 KByte EEPROM can be programmed via the EEPROM library.

However unlike other SBCs on the market – you don’t get any video or audio output.

Let’s have a quick look around the board. Here you can see the DC socket and microSD card socket:

Intel Galileo DC end

 From the view below you can see the Arduino shield stacking headers and flash memory:

Intel Galileo ICSP end

… more jumpers for settings, a USB host socket, USB connection (client) socket, RS232 via 3.5mm socket (!) and 10/100 Ethernet:

Intel Galileo socket end

… and some nifty jumpers to select 3.3 or 5V operation for shields and IOREF:

Intel Galileo IOREF Vin jumpers

… this jumper pair is to add a 3V battery to keep the real-time clock ticking over when the main supply is removed:

Intel Galileo RTC battery jumpers

Perhaps a CR2032 button cell holder would be preferable, there’s plenty of room on the PCB. Finally – the two reset buttons:

Intel Galileo reset buttons

If you want to reset your emulated Arduino, press the one on the left (labelled I). If you want to reboot the entire computer, press the one on the right (labelled X). This seems a little counter-intuitive, as you would imagine the button closer to the stacking headers would reset the Arduino. Note that if you reboot the computer, the last sketch you’ve uploaded will be removed and need to be uploaded again. Furthermore, more often than not rebooting the Galileo wasn’t entirely successful – and required a full removal of USB, power then replacing the power and USB to get another connection.

Turning the Galileo over reveals some fascinating PCB track patterns, and the mini-PCIe connector:

Intel Galileo bottom 2

Getting Started

Having a slight bent towards Arduino, the first thing we like to do is get the blink sketch running. The documentation is scattered all over the place, so start from maker.intel.com and follow the links listed in the “Explore Intel makers” column. The closest thing to a quick setup guide can be downloaded hereThere’s a video by what sounds to be a ten year old explaining the board – who signs off by telling us it’s ok to break something (hopefully not the Galileo at $77 a pop). Marketing FTW. Eventually we found the official Intel support page for the Galileo, so bookmark that for future reference.

However if you just want to get started as quickly as possible, keep reading. First, download the Arduino IDE for Galileo from here. Next, extract the IDE folder to your root directory – and don’t have any spaces in the folder name. For example, use:

and not:

Now plug in your Galileo – and always plug the 5V power into the Galileo before the USB (use the “USB client” socket). For Windows the USB driver (for “Gadget Serial v2.4”) is in the IDE folder, just point Windows to the top Galileo Arduino IDE folder.

Note that it takes around twenty seconds for the PC to recognise the Galileo via USB (as the Galileo needs time to boot up – it’s running Linux). For Windows users – after loading the IDE, check which COM port has been allocated. For some reason the Galileo can’t deal with COM10 or higher. To change this, head over to the Device Manager. Open Ports (COM & LPT) then right-click the Galileo and click properties:

Intel Galileo Change COM number

Next, click the Port Settings tab, then Advanced:

Intel Galileo Change COM number tab

Then select a free COM port number that’s under 10, close all the dialogue boxes and restart the computer. After the reboot, load the IDE, select the right board and serial port in the Tools menu – then select Firmware Update in the Help Menu. If for some reason you put a memory card in the microSD card slot – remove it before this process.

Intel Galileo Windows Firware Update

A confirmation box will appear, so move forward and wait for the process to finish. Don’t touch the IDE, board or anything near the Galileo until this finishes. Read some kit reviews. The update process took eight minutes for us, however will depend on the speed of your Internet connection.

Intel Galileo Windows Firware Update status

Finally, try the ubiquitous blink sketch. Once uploaded,  the tiny LED next to the coin cell jumpers will blink as requested. Now we’ll explore more about using the Galileo as an Arduino-compatible board.

How Arduino-compatible is the Galileo?

The first thing we like to do with new boards that differ from the classic Uno is to run a speed test, and for this we use the following sketch by Steve Curd from the Arduino forum:

It calculates Newton Approximation for pi using an infinite series. For comparison an Arduino Due takes 690 ms, an Arduino Mega 2560 takes 5765 ms, and a pcDuino v2 can do it in 9 to 43 ms (depending on what else is running on Linux). So out of the box, the Galileo takes 279 ms:

Intel Galileo Arduino speed test

Out of the box there is 262144 bytes available for sketches. As the Arduino is emulated, the hardware for I/O is a little different than you may have expected, and provided by a variety of I2C port expanders, MUXs and so on. For example I2C can only run at 100 kHz in master mode, no slave mode, and similar restrictions on SPI as well. Again, review this page to learn more about the internal hardware differences between an Arduino Uno and Intel Galileo.

Visit this page and scroll down to the block diagram for a visual representation, and while you’re there – review the entire page to learn more about the specific Arduino Uno R3 implementation on the Galileo. A lot of work has been done to allow successful emulation of the Arduino using the Quark CPU and internal OS. For example the EEPROM library just works, and has 11264 bytes of storage.

You can get an idea of what is supported “out of the box” by reviewing the libraries included with the Galileo’s IDE installation, for example:

Intel Galileo Arduino IDE examples

So most of the basic requirements are covered at the time of writing. And unlike some other SBCs emulating Arduino, the onboard Ethernet “just works” as it should with the Ethernet library – and the USBHost library can take advantage of the matching socket on the board. Again – research is the key, so spend some time determining if the Galileo can solve your problems.

One interesting example of the limitations of the “emulated” Arduino is the speed, and this has been highlighted by Al Williams of Dr Dobb’s journal – who ran a simple sketch to see how fast a digital output pin could be set. As GPIO is provided by external SPI- and I2C-based interface ICs, there will be a speed hit. But how much? Naturally we can’t use port manipulation so we’re back to simple digitalWrite functions with the following sketch:

An Arduino Uno running the sketch was clocked at 96.34 kHz:

Arduino Uno digitalWrite test

… and the Intel Galileo was clocked at … 225.2 Hz:

Intel Galileo digitalWrite test

This test isn’t a criticism of the Galileo, just an example of what you need to keep in mind when using it. If you’re curious about the real-time clock it’s accessed via Linux. Finally, there’s a list of known issues on the Intel forum – so check this out to get a grip on what is and is not working in terms of Arduino compatibility. One more thing – you will need a memory card installed if you want the Galileo to remember sketches after power-off.

Update – thanks to our friends (!) at reddit, you can push some I/O faster – see this post in the Intel forum.

Linux – internal

The Galileo arrived pre-loaded with a very light version of Linux, however due to the lack of video output you need to access the “computer” via some old-school methods. And thus one method is via Telnet over Ethernet. If you don’t have a Telnet client, try PuTTY. To get started, ensure you have your Galileo connected to power, client USB to PCm and to your LAN. Then upload the following sketch to your Galileo:

The observant will notice by using the system function you can send instructions to the Linux command line from your Arduino sketch. And any resulting output text can be sent to the serial monitor by directing it to ttyGS0.

Anyhow, the above sketch will run the ifconfig command and return relevant networking data about your Galileo – including its IP address:

Intel Galileo telnet sketch

Once you have the IP address, you can Telnet in and command your Galileo just like it’s 1992:

Intel Galileo poky linux box telnet

Don’t get too excited, there isn’t that much installed (e.g. no gcc or make). For more information on the Poky linux, visit the project page. Apart from running vi my *nix memory is a bit vague, however the onboard system is quite minimal. If you want to do anything serious, such as use a WiFi or other PCIe card – you’ll need to boot your Galileo with an external OS stored on a microSD card. Another way of looking at the Galileo is that it’s a board not for development with, but for running code built on a different system and then loaded onto the Galileo.

Linux – external

As I haven’t been a *nix user for a very long time, it didn’t seem worthwhile to spend a whole day preparing for an installing the external OS on the Galileo for review. However from what I can tell you’ll need to do this to run anything substantial including WiFi adaptors, python, node.js and so on. Which in my personal opinion sort of ruins the Galileo for me. Other SBCs can do all of this a lot easier, cheaper and with better documentation.

Arduino Support

As the Galileo is from Intel and not Arduino, you need to ask for support in the Intel forum. This will be an interesting test for Intel, will they invest in a substantial support effort or just stand back and say it’s all open source? Time will tell. In the meanwhile there is a gallery hosted by Intel with links to different projects.

Conclusion

Once again – remember that the Galileo is a limited single-board computer that emulates (to a certain, varying degree) an Arduino Uno R3. It is a contender if you need to integrate some Arduino-based control with software running on a light Linux machine, and all in a compact board. Or if you want to experiment with USB host and Ethernet on the Arduino platform at the same time, this could be a cheaper and more powerful option. Support is there if you can use Google, however this is not the idea beginners’ Arduino board. So don’t be a sheep and rush out and buy one after reading the marketing blurb – do your own research first.

Personally I would say that if you have a need for the specific hardware interfaces of the Galileo, and have a full understanding of the board limitations – then it’s the board for you. Otherwise if you want to experiment with a full single-board computer with Arduino compatibility, get a pcDuino. Full-sized images are available on flickr.

And if you enjoyed this article, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a third printing!) “Arduino Workshop”.

visit tronixlabs.com

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

[Note – Intel Galileo purchased for review by tronixstuff.com and not a promotional consideration]

Review – Iteaduino Lite “nearly 100% Arduino-compatible” board

Introduction

Over the last year there have been a few crowd-funded projects that offered very inexpensive Arduino-compatible boards. Frankly most of them weren’t anything out of the ordinary, however one of them is quite interesting due to the particular design of the board, and is the subject of this review.

An established company Iteadstudio ran a successful Indiegogo campaign last December to fund their Iteaduino Lite – Most inexpensive full-sized Arduino derivative board”. Having a spare US$5 we placed an order and patiently waited for the board. Being such a low price it was guaranteed to raise the funding – but was it worth the money? Or the effort? Possibly.

The board

In typical fashion the board arrived in bare packaging:

Iteaduino Lite arrived

 The Iteaduino Lite isn’t that surprising at first glance:

Iteaduino Lite bare top

To the new observer, it looks like an Arduino board of some sort. Nice to see all those GPIO pins with double breakouts. No surprises underneath:

Iteaduino Lite bottom

The URL on the bottom is incorrect, instead visit http://imall.iteadstudio.com/iteaduino-lite.html. Looking at the board in more detail, there are some interesting points of difference with the usual Arduino Uno and compatibles.

The USB interface is handled with the Silabs CP2102 USB to UART bridge IC:

Iteaduino Lite CP2102 USB

The next difference is the power circuitry – instead of using a linear voltage regulator, Itead have used a contemporary DC-DC converter circuit which can accept between 7 and 24V DC:

Iteaduino lite power supply

Furthermore, the entire board can operate at either 5V or 3.3V, which is selected with the slide switch in the above image. Finally – the microcontroller. Instead of an Atmel product, Itead have chosen the LogicGreen LGT8F88 microcontroller, a domestic Chinese product:

Iteaduino Lite LGT8F88A MCU

And there are only two LEDs on the Iteaduino Lite, for power and D13. The LED on D13 ins’t controlled via a MOSFET like other Arduino-compatibles, instead it’s simply connected to GND via a 1kΩ resistor.

Getting started with the Iteaduino Lite

The stacking header sockets will need to be soldered in – the easiest way is to insert them into the board, use an shield to hold them in and flip the lot upside down:

Iteaduino lite stacking headers

Which should give you neatly-installed headers:

Iteaduino Lite ready to use

Watch out for the corners of the board, they’re quite sharp. Next, you need to install the USB driver for the CP2102. My Windows 7 machine picked it up without any issues, however the drivers can be downloaded if necessary.

Finally a new board profile is required for the Arduino IDE. At the time of writing you’ll need Arduino IDE v1.0.5 r2. Download this zip file, and extract the contents into your ..\Arduino-1.0.5-r2\hardware folder. The option should now be available in the Tools > Board menu in the IDE, for example:

Iteaduino Lite Arduino IDE

From this point you can run the blink example to check all is well. At this point you will realise one of the limitations of the Iteaduino Lite – memory. For example:

Iteaduino Lite Arduino IDE memory

You only have 7168 bytes of memory for your sketches – compared to 32, 256 for an Arduino Uno or compatible. The reason for this is the small capacity of  …

The LogicGreen LGT8F88 microcontroller

This MCU is a Chinese company’s answer to the Atmel ATmega88A. You can find more details here, and Itead also sells them separately. The LGT8F88 offers us 8Kbyte of flash memory of which 0.7KB is used by bootloader, 1 KB of SRAM and 504 bytes (count ’em) of EEPROM. Apparently it can run at speeds of up to 32 MHz, however the LGT8F88 is set to 16 MHz for the Iteaduino Lite.

According to Logic Green, their LGT8F88 “introduce a smart instruction cache, which can fetch more instructions one time, effectively decrease memory accessing operations“. So to see if there’s a speed bump, we uploaded the following sketch – written by Steve Curd from the Arduino forum. It calculates Newton Approximation for pi using an infinite series:

For a baseline comparison, an Arduno Uno R3 completes the calculations in 5563 ms:

Iteaduino Lite Uno speed test

… and the Iteaduino Lite completed it in 5052 ms:

Iteaduino Lite speed test

So that’s around a 10% speed increase. Not bad at all. The LGT8F88 also has the requisite GPIO, SPI, and I2C available as per normal Arduino Uno boards. You can download the data sheet with more technical details from here. Frankly the LGT8F88 is an interesting contender in the marketplace, and if Logic Green can offer a DIP version at a good price, the ATtiny fans will have a field day. Time will tell.

Power Circuit

The DC-DC circuit promises 5V output, with up to 24V DC input – so we cranked the input to 24V,  put a 1A load on the 5V output – and put the DSO over 5V to measure the variations – with a neat result:

Iteaduino lite PSU test

So no surprises there at all, the Iteaduino Lite gives you more flexible power supply options than the usual Arduino board. However an eagle-eyed reader notes that a few of the capacitors are only rated at 25V – especially the two right after the DC socket/Vin. You can see this in the schematic (.pdf). So take that into account, or drop your Vin to something more regular such as below 12V.

Conclusion

The Iteaduino Lite is an interesting experiment in bargain Arduino-compatible boards. However we say “why bother?” and just get a Uno R3-compatible board.

At the end of the day – why bother with this board? For a little extra you can get boards with the ATmega328P or 32U4 which gives you 100% compatibility. Nevertheless, this was an interesting experiment. Full-sized images are available on flickr. And if you enjoyed this article, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a third printing!) “Arduino Workshop”.

visit tronixlabs.com

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Review – NXP LPC800-MAX Development Board

Introduction

Now and again we examine various development boards designed for use with the mbed development platform for ARM microcontrollers, such as the the original mbed unit and the Freescale Freedom FRDM-KL25Z – and now we have another one from NXP … their new LPC800-MAX development board:

LPC800-MAX front PCB

LPC800-MAX rear PCB

Although the LPC800-MAX works with the mbed online compiler, you’re not limited to that. NXP have also supplied free offline development tools based on the Eclipse IDE.

Hardware specification

The board is based on the NXP LPC812 with an ARM Cortex-M0+ Core running at 30 MHz. The LPC812 has 16KB flash memory, and 4KB RAM. For I/O you have 3 x USARTs, 2 x SPI ports,  one comparator, and one I2C port. The serial lines are brought out to a separate serial expansion connector to allow easy connection to a range of expansion boards from the manufacturer. An RGB LED is fitted to the board for all the “hello, world” fun you could want, and for extra I/O (and I2C practice) there’s a four-channel NXP PCF8591 ADC (and also gives you one DAC as well – convenient) along with a PCA9672 I/O expander IC for more GPIO. 

If you’re using the offline development IDE you can also make use of the NXP hardware debugging interface as well. Users of the physically-narrow range of NXP LPC development boards will also recognise the two parallel rows of pinouts down the length of the PCB, and Arduino users will recognise the header sockets (more on those later). When you receive the board – you just receive the board, so you’ll need a typical microUSB cable. Finally, you can download the LPC800 MAX schematic for further examination.

What is mbed anyway?

mbed is a completely online development environment. That is, in a manner very similar to cloud computing services such as Google Docs. However there are some pros and cons of this method. The pros include not having to install any software on the PC – as long as you have a web browser and a USB port you should be fine; any new libraries or IDE updates are handled on the server leaving you to not worry about staying up to date; and the online environment can monitor and update your MCU firmware if necessary.

However the cons are that you cannot work with your code off-line (no working in-flight) and there may be some possible privacy issues. Here’s an example of the environment:

mbed compiler screen

As you can see the IDE is quite straight-forward. All your projects can be found on the left column, the editor in the main window and compiler and other messages in the bottom window. There’s also an online support forum, an official mbed library and user-submitted library database, help files and so on – so there’s plenty of support.

Code is written in C/C++ style and doesn’t present any major hurdles. When it comes time to run the code, the online compiler creates a downloadable binary file which is copied over to the hardware via USB, from which point you reset the board and off it goes.

If you’re using the LPC800-MAX with mbed, be sure to follow the “Getting Started” guide and also check for the latest firmware from the mbed handbook. And although the mbed board appears as a USB storage device, you can still have serial communication with a PC using a virtual serial port via the USB cable connected between the PC and the LPC800-MAX.

Arduino form-factor compatibility

You will notice the header sockets physically match the Arduino Uno R3 specification, so you can drop in an Arduino shield. However the board runs on 3.3V and is 5V-tolerant, so it’s preferable your shields or new designs are good for 3.3V operation. Furthermore, as the onboard LPC812 doesn’t have as much analogue and digital I/O as an ATmega328P found on the Arduino Uno, the extra I/O are provided by two external ICs via I2C. Four analogue inputs are provided by the onboard NXP PCF8591 ADC (and also gives you one DAC as well – convenient) – and the equivalent A4 and A5 pins are not ADC, instead they’re just I2C SDA and SCL respectively.

The extra digital I/O pins are provided via I2C by the aforementioned PCA9672 I/O expander IC. Upon reflection you’d have to be very keen to use a specific Arduino shield as some extra coding would be required to deal with the required I/O – however on the other hand you can easily add external circuitry with blank Arduino protoshields for new projects. Finally, here’s a pin map of the shield connectors.

LPC-800 pin map

Not a fan of mbed? Offline tools

NXP have also made their LPCXpressoIDE based on Eclipse available for free download for all platforms – http://lpcware.com/lpcxpresso/download. The free version is good for up to 256 KB code size (provided you register the software) which more than covers the requirements for this and other LPC800 products:

LPCXpresso IDE screenshot

For more information and support, there is a huge repository of information on the NXP website.

Where to get an LPC800-MAX

The board is manufactured and sold by Embedded Artists. At the time of writing the board retails for €15, which is around US$21. NXP also have a range of LPC800 microcontrollers, including very inexpensive through-hole 8-pin versions which are available from the usual retailers. And adafruit of all places have a US$13 starter pack based around the DIP LPC810, which is an interesting 32-bit alternative to the ATtinys out there.

Conclusion

If you’re interested in working with the NXP LPC800-series of microcontrollers, the LPC800-MAX board is a very convenient development board considering the included debugger, Arduino protoshield capability, external GPIO expander and ADC/DAC and onboard LED – as well as the free IDE.

If you enjoy the mbed development environment, the board gives you another hardware option. However if you’re an Arduino user looking for a cheap way of getting a faster board whilst using your existing environment – this is not for you. The product under review was purchased without the knowledge of the supplier.

Full-sized images can be found on flickr. And while you’re here – are you interested in Arduino? Check out my new book “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Review – Freetronics 128×128 Pixel Colour OLED Module

Introduction

Time for another review, and in this instalment we have the new 128×128 Pixel OLED Module from Freetronics. It’s been a while since we’ve had a full-colour graphic display to experiment with, and this one doesn’t disappoint. Unlike other displays such as LCD, this one uses OLED – “Organic Light-Emitting Diode” technology.

OLEDs allow for a faster refresh rate, and to the naked eye has a great amount of colour contrast. Furthermore the viewing angles are excellent, you can clearly read the display from almost any angle, for example:

freetronics OLED display bottom view

freetronics OLED display side

However they can suffer from burn-in from extended display of the same thing so that does need to be taken into account. Nevertheless they provide an inexpensive and easy-to-use method of displaying colour text, graphics and even video from a variety of development boards. Finally – there is also a microSD socket for data logging, image storage or other uses. However back to the review unit. It arrives in typical retail packaging:

freetronics OLED display

and includes the OLED display itself, a nifty reusable parts tray/storage box, and two buttons. The display has a resolution of 128 x 128 pixels and has a square display area with a diagonal size of 38.1 mm. The unit itself is quite compact:

freetronics OLED display front

freetronics_OLED_display_rear

The display is easily mounted using the holes on the left and right-hand side of the display. The designers have also allowed space for an LED, current-limiting resistor and button on each side, for user input or gaming – perfect for the  included buttons. However this section of the PCB is also scored-off so you can remove them if required. Using the OLED isn’t difficult, and tutorials have been provided for both Arduino and Raspberry Pi users.

Using with Arduino

After installing the Arduino library, it’s a simple matter of running some jumper wires from the Arduino or compatible board to the display – explained in detail with the “Quickstart” guide. Normally I would would explain how to use the display myself, however in this instance a full guide has been published which explains how to display text of various colours, graphics, displaying images stored on a microSD card and more. Finally there’s some interesting demonstration sketches included with the library. For example, displaying large amounts of text:

… the variety of fonts available:

freetronics OLED font demonstration

… and for those interested in monitoring changing data types, a very neat ECG-style of sketch:

… and the mandatory rotating cube from a Freetronics forum member:

Using with Raspberry Pi

For users of this popular single-board computer, there’s a great tutorial and some example videos available on the Freetronics website for your consideration, such as the following video clip playback:

Support

Along with the Arduino and Raspberry Pi tutorials, there’s also the Freetronics support forum where members have been experimenting with accelerated drivers, demonstrations and more.

Competition!

For a chance to win your own OLED display, send a postcard with your email address clearly printed on the back to:

OLED Competition, PO Box 5435 Clayton 3168 Australia. 

Cards must be received by 24/10/2013. One card will then be selected at random and the winner will be sent one Freetronics OLED Display. Prize will be delivered by Australia Post standard air mail. We’re not responsible for customs or import duties, VAT, GST, import duty, postage delays, non-delivery or whatever walls your country puts up against receiving inbound mail.

Conclusion

Compared to previous colour LCD units used in the past, OLED technology is a great improvement – and demonstrated very well with this unit. Furthermore you get the whole package – anyone call sell you a display, however Freetronics also have the support, tutorials, drivers and backup missing from other retailers. So if you need a colour display, check it out.

And for more detail, full-sized images from this article can be found on flickr. And if you’re interested in learning more about Arduino, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a third printing!) “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

[Note – OLED display was a promotional consideration from Freetronics]

First look – Arduino Yún

Introduction

After being announced in May this year, the new Arduino Yún has arrived in the crowded marketplace – and I snapped up one of the first to arrive in Australia for an initial review. The purpose of which is to run through the out of box experience, and to see how easy it was to get the Yún working with the promised new features.

[Update – over time we’ll publish tutorials specifically for the Yún, which are listed here.]

The Yún introduces some interesting new combinations of hardware and connectivity, all within the familiar form-factor. Which gives us plenty to examine and write about, so let’s get started. First, a quick look around the Yún:

Arduino Yun Yún front

Notice the stickers on the header sockets, useful for beginners or the absent-minded…

Arduino Yún Yun right side

The usual TX/RX and D13 LEDs, plus notifiers for power, WiFi, LAN and USB use…

Arduino Yún Yun sockets

Ethernet, USB programming, USB host…

Arduino Yun Yún top side

Again with the stickers…

Arduino Yun Bottom Yún

The rear is quite busy. You can also see “Made in Taiwan” – a first for Arduino. I believe the reason for this was due to the new Atheros chipset requirements. Did you notice the multiple reset buttons? There are three – one for the Arduino, one for wifi and one to reboot Linino. As you can see there’s a lot of circuity on the bottom of the Yún, so it would be prudent to use some short standoffs to elevate the board and protect the bottom. Before moving on, you might like the following video where the Arduino team introduce the Yún:

Specifications

The Yún is based around the Arduino Leonardo-specification board – thus you have the ATmega32U4 microcontroller and the usual Leonardo functions. Note you cannot feed wild DC voltages into the Vin pin – it must be a regulated 5V. And the DC socket has gone, so for a solid connection you might want to make or buy your own power shield.

However there is so much more… underneath a small metal shield below the digital I/O pins is an Atheros AR9331 CPU running a Linux distribution based on OpenWRT named Linino. This Atheros part of the board is connected to a microSD socket, 10/100 Ethernet port, a USB 2.0 socket for host-mode functions and also has IEEE 802.11b/g/n WiFi, and Power-over-Ethernet support (with an optional adaptor).

And all of that is connected to the Arduino side of things via a simple serial “bridge” connection (with it’s own library) – which gives the Arduino side of the board very simple methods of controlling the other onboard hardware.

Getting started with the Yún WiFi

First thing is to download and install the new IDE, version 1.5.4. This is for Due and Yún, so keep your older installations as well. On the general Arduino side of things nothing has changed, so we’ll move on to the more interesting side of the board. The first of these is to setup and experiment with the onboard WiFi. After connecting your board to USB for power, you can connect to it with your PC’s WiFi:

Arduino Yun Yún office wifi

… at which point you connect to the Yún network. Then visit 192.168.240.1 from a web browser, and you’re presented with a page that asks for the default password, which is … “arduino”:

Arduino Yún Yun wifi setup

At which point you’re presented with the relevant details for your Yún:

Arduino Yún  Yun wifi details

… such as the IP address, MAC address, etc. Make note of your MAC address, you might need it later. From here you can configure the Yún WiFi details, for example the name and password, and also the details of your existing WiFi network which can be used to access the Yún. Once you save those, the Yún reboots and tells you to connect the PC back to the existing WiFi network:

Arduino Yun Yún WiFi setup complete

If for some reason it doesn’t work or you entered the wrong settings – hold down the “WLAN RST” button (next to the USB host socket) for five seconds. This sets the WiFi details in the Yun back to the default … and you can start all over again.

Note that the Yún’s preset IP of 192.168.240.1 may not be suitable for your own network. For example, if your home router is 10.1.1.1 you need to do some detective work to find out the IP address for the Yún. Head into your router’s administration pages and look for your DHCP Client Log. It will show a list of devices that are connected to the network, including their MAC and IP address – for example:

Arduino Yún Yun new IP address DHCPThen it’s a simple matter of finding the MAC address in the list and the matching IP. Once you have the IP address, enter that into a web browser and after being prompted for the Yún’s password, you’re back to the welcome page with the IP, MAC addresses etc.

WiFi Sketch Uploading

Once your Yún is on the same WiFi network as the PC running the IDE – you can upload a sketch over WiFi! This is possible due to the bridge between the Atheros section on the board and the Arduino hardware. Just select the board type as normal in the IDE, and the port (the IP address version):

Arduino Yun WiFi sketch upload  Yún

… then hit Upload as normal, enter the password:

Arduino Yun WiFi sketch upload  Yún

and you’re done. Awesome.

Console-based control of Arduino over WiFi

There’s a neat example that demonstrates how you can control the Arduino over the WiFi using a console terminal on the PC. Upload this sketch (from http://arduino.cc/en/Guide/ArduinoYun#toc13):

Then load your terminal software. We use PuTTY on Windows. Run the terminal software, then login as root, then telnet to “localhost 6571”:

Arduino Yún  Yun terminal console putty

You can then send characters to the Yún just as you would with a USB-connected Arduino via the serial monitor. With the example above you’re turning the D13 LED on and off, but you can get the idea.

The “Internet of Things”

Arduino has teamed up with a service called “Temboo” – which gives you over 100 APIs that your Yún can hook up with to do a myriad of things, such as send tweets, get weather data from Yahoo, interact with Dropbox, etc. This is done easily and explained quite well at the Temboo website. After signing up for Temboo (one account seems to be free at the moment) we tried the Yahoo weather API.

You enter the parameters using an online form in Temboo (in our example, the address of the area whose weather forecast we required), and the Temboo site gives you the required Arduno sketch and header file to upload. And you’re done. With this particular example, I wanted the weather in Sydney CBD – and once running the data is returned to the serial monitor, for example:

Temboo Arduino Yun yahoo weather Yún

It was great to see that work the very first time, and a credit to Temboo and Arduino for making it happen. But how?

There is a Temboo client in the Linino OS, which is the gateway to the API via WiFi, and also communicates with the Arduino via the serial bridge. The Arduino Temboo library can then interact with the Linino client without complex code. The weather data is then returned back from the Internet via the Temboo client and fed to the Arduino serial port, where you can parse it with your own code. This looks like a lot of fun, and also could be quite useful – for example capturing data and sending it to a Google Docs spreadsheet. For more information, check out the Temboo website.

However you can delve deeper and create your own APIs, matching code – and perhaps other services will develop their own APIs in the near future. But for now, it’s a good start.

Where to from here? And support?

This article has only scratched the surface (but not bad considering the board arrived a few hours ago). There’s plenty more examples on the getting started page, in the IDE (under “Bridge”) – plus a dedicated Arduino Yún forum. And check out this gmail notifier. In the near future we’ll create some of our own tutorials, so stay tuned.

Is the Yún a completely open-source product? 

Well it says “open source electronics prototyping platform” on the rear, but is this true? The Arduino Leonardo-side of the board is. However the Atheros AR9331 chip is not. Nevertheless, are you really going to reproduce your own AR9331? So it doesn’t really matter. Being a pragmatist I propose that the Yún solves the problem of Arduino and Internet connectivity quite well for the non-advanced user – so not being totally OSHW isn’t an issue.

Support

This board is very new to us here, so for questions or support please ask on the dedicated Arduino Yún forum.

Conclusion

Since the popularity of various single-board computers has increased exponentially over the last few months, some may say that the Yún is perhaps too little, too late. After only having the Yún for a few hours before writing this article, personally I disagree with this statement – the Yún is a device that still gives us the wide range of hardware control, and what looks to be a very simple method of connectivity that surely is cheaper and less prone to issues than the original Arduino WiFi shield.

What the Yún gives us is a simple, well-executed method of getting our Arduino connected to the outside world – and in a manner that won’t confuse or put off the beginner or intermediate user. So for now, it’s a win.

What do you think? Leave a comment below.

And for more detail, full-sized images from this article can be found on flickr. And if you’re interested in learning more about Arduino, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a third printing!) “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Initial Review – Goldilocks Arduino-compatible with ATmega1284P

Introduction

In March this year we discussed a project by Phillip Stevens to crowd-fund an Arduino-compatible board with an ATmega1284p microcontroller – the “Goldilocks”. After being funded at a rapid rate, and subjected to some community feedback – the boards have now been manufactured and delivered to those who pledged. If you missed out – there’s some more available for direct sales. We ordered five and now have them for the subject of this review – and two to give away. So let’s examine the board and see what’s new.

What is it?

After hitting the limits of the Arduino Uno with respect to SRAM, CPU speed and not wanting to lose compatibility with existing projects by changing platforms, Philip decided to shift the MCU up to the ATmega1284P. This offers eight times the SRAM, four times the flash memory and EEPROM – and is also clocked at 20 MHz instead of the usual 16 MHz on Unos, etc. After the original design was announced, it was the victim of some pretty heavy feature-creep – however with Freetronics as the manufacturing partner the final result is a nicely-finished product:

freetronics goldilocks

Now let’s rip open the packaging and examine the board in greater detail. From the images below you can get the gist of things… starting with the top you can see the ATmega1284P next to the microSD card socket. There’s a JTAG connector for the 1284P on its left – and below that a 32.768 kHz crystal for RTC use. And like other Freetronics boards a large prototyping area has been squeezed in below pins D0~7 that also has the power and I2C lines at the edge. Furthermore note that all I/O pins are brought out to separate holes in alignment with the header sockets. And my favourite – a switch-mode power supply circuit that can offer up to 2A of current – great for GSM shields.

freetronics goldilocks top

Another point of interest is the ATmega32U2 microcontroller which is for USB duties – however it can be used as a separate “board” on its own, with a separate reset button, ICSP breakout and the ports are broken out logically:

freetronics goldilocks atmega32u2

Furthermore the 32U2’s SPI bus can be wired over to the main 1284P to allow communication between the two – simply by bridging the provided pads on the PCB you can join them. Also on the bottom you can see how each I/O pin can be disconnected from the I/O areas and thus diverted if necessary. It really is a testament to the design that so much of the board is customisable, and this attention to detail makes it stand apart from the usual Arduino-compatibles out there.

freetronics goldilocks bottom

One thing that did strike me was the retina-burning intensity of the onboard LEDs – however you can disable them by cutting the provided track on the PCB. For a complete explanation of the hardware side of things, check out the user guide.

Using the Goldilocks

One of the main goals was to be Arduino Uno R3-compatible, and from initial examination this is certainly the case. However there are a couple of differences, which you can find out more about in the user guide. This is not the first board for an Arduino user, but something chosen after getting some experience. Installation was very easy, it should be plug-and-play for the non-Windows crowd. However if you’re part of the silent majority of Windows users then the required U2duino Programmer.inf file for the Device Manager will be found in the production_firmware folder of the software download available on the product page. Furthermore no matter your OS – don’t forget to install the Arduino IDE Goldilocks board profile.

Before getting too excited and uploading your sketches, you can examine the the ATmega1284p bootloader monitor which allows for memory dumps, port testing, and more. Simply connect up your board, load the Arduino IDE, select the board and COM: port then open the Serial Monitor. By sending “!!!” after a board reset, a simple menu appears – which is shown in the following video:

Now for a quick speed test. We’ll use a sketch written by Steve Curd from the Arduino forum. It calculates Newton Approximation for pi using an infinite series:

The Goldilocks was compared with a standard Arduino Uno, with the following results (click image to enlarge):

goldilocks Uno speed test

 As you can see from the results below, the Goldilocks theoretical extra 4 Mhz of speed is shown in the elapsed time between the two boards – 4433 ms for the Goldilocks vs. 5562 ms for the Uno, a 25.4% increase. Looking good. We’ll leave it for now – however for more information you can review the complete user manual, and also discuss Goldilocks in the Freetronics customer forum.

Competition

Two of our twitter followers will be randomly selected on the 14th of September, and will each receive one Goldilocks board. So follow us on @tronixstuff for a chance to win a board, and also keep up with news, new articles and items of interest. Board will be delivered by Australia Post standard air mail. We’re not responsible for customs or import duties, VAT, GST, import duty, postage delays, non-delivery or whatever walls your country puts up against receiving inbound mail.

Conclusion

The Goldilocks is the board that can solve many problems – especially when you’ve outgrown your Uno or similar board. We look forward to using it with larger projects that burn up SRAM and exploring the possibilities of using the two microcontrollers at once. There’s a whole bundle of potential – so congratulations to Phillip Stevens, Freetronics and all those who pledge to the funding and supported the project in general. And to join in – you can get your own from Freetronics. Full-sized images are on flickr. And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Part review – Freetronics HBRIDGE motor driver shield for Arduino

Introduction

Controlling motors with an Arduino is a fun and generally integral part of the learning process for most up-and-coming embedded electronics enthusiasts. Or quite simply, using motors is fun ’cause you can make robots, tanks and stuff that moves. And thanks to Freetronics we have their new HBRIDGE motor shield for Arduino to review, so let’s check it out and get some things moving with it.

Arriving in retail-friendly packaging, the HBRIDGE can be stored with the included reusable packaging, and also has a quick-start guide that explains the technical specifications and URLs for tutorials:

HBRIDGE

The shield is compatible with the latest R3-series Arduino boards including the Leonardo and of course the Freetronics Eleven board:

HBRIDGE shield Freetronics Eleven

Specifications

The HBRIDGE shield is based on the Allegro A4954 Dual Full-Bridge DMOS PWM Motor Driver. For the curious, you can download the data sheet (pdf). This allows very simple control of two DC motors with a maximum rating of 40V at 2A, or one bipolar stepper motor. Unlike other motor shields I’ve seen, the HBRIDGE has a jumper which allows the power supply for the motor shield to be fed into the Arduino’s Vin line – so if your motor power supply is under 12V DC you can also power the Arduino from the same supply. Or you can run the motors from the Arduino’s power supply – if you’re sure that you won’t exceed the current rating. Frankly the former would be a safer and this the preferable solution.

The motor(s) are controlled very simply via PWM and digital logic. You feed the A4954 a PWM signal from a digital output pin for motor speed, and also set two inputs with a combination of high/low to set the motor direction, and also put the motor controlled into coast or brake mode. However don’t panic, it’s really easy.

Using the shield

How easy? Let’s start with two DC motors. One example of this is the tank chassis used in Chapter 12 of my book “Arduino Workshop – A Hands-On Introduction with 65 Projects“:

arduino_workshop_tank

The chassis is pretty much a standard tank chassis with two DC motors that run from an internal 9V battery pack. Search the Internet for “Dagu Rover 5” for something similar. Connection is a simple manner of feeding the power lines from the battery and the motor wires into the terminal block on the HBRIDGE shield.

Next, take note of two things. First – the slide switches below the jumpers. Using these you can select the maximum amount of current allowed to flow from the power supply to each motor. These can be handy to ensure your motor doesn’t burn out by drawing too much current in a stall situation, so you can set these to the appropriate setting for your motor – or if you’re happy there won’t be any issues just leave them both on 2A.

The second thing to note is the six jumpers above the switches. These control which digital pins on your Arduino are used to control the motor driver. Each motor channel requires two outputs and one PWM output. If you leave them all on, the Arduino pins used will be the ones listed next to each jumper, otherwise remove the jumpers and manually wire to the required output. For the purposes of our demonstration, we’ll leave all the jumpers in. A final word of warning is to be careful not to touch the A4954 controller IC after some use – it can become really hot … around 160 degrees Celsius. It’s the circled part in the image below:

A4954_controller_IC

So back to the DC motors. You have two digital outputs to set, and also a PWM signal to generate – for each channel. If you set the outputs to 1 and 0  – the motor spins in one direction. Use 0 and 1 to spin the other way. And the value of the PWM (0~255) determines the speed. So consider the following sketch:

Instead of chasing the tank chassis with a camera, here it is on the bench:

Now to try out a stepper motor. You can control a bipolar motor with the HBRIDGE shield, and each coil (pole) is connected to a motor channel.

Hint – if you’re looking for a cheap source of stepper motors, check out discarded office equipment such as printers or photocopiers. 

For the demonstration, I’ve found a random stepper motor from a second-hand store and wired up each pole to a channel on the HBRIDGE shield – then run the Arduino stepper motor demonstration sketch by Tom Igoe:

With the following results:

Considering it was a random stepper motor for which we didn’t have the specifications for – it’s always nice to have it work the first time! For more formal situations, ensure your stepper motor matches the power supply voltage and so on. Nevertheless it shows how easy it can be to control something that appears complex to some people, so enjoy experimenting with them if you can.

Competition

Thanks to Freetronics we have a shield to give away to one lucky participant. To enter, clearly print your email address on the back of a postcard and mail it to:

H-Bridge Competition, PO Box 5435 Clayton 3168 Australia.

Entries must be received by the 20th of  September 2013. One postcard will then be drawn at random, and the winner will receive one H-Bridge shield delivered by Australia Post standard air mail. One entry per person – duplicates will be destroyed. We’re not responsible for customs or import duties, VAT, GST, import duty, postage delays, non-delivery or whatever walls your country puts up against receiving inbound mail.

Conclusion

As demonstrated, the HBRIDGE shield “just works” – which is what you need when bringing motorised project ideas to life. The ability to limit current flow and also power the host board from the external supply is a great idea, and with the extra prototyping space on the shield you can also add extra circuitry without needing another protoshield. Very well done. For more information and to order, visit the Freetronics website. Full-sized images are on flickr. And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

tronixstuff

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Note – The motor shield used in this article was a promotional consideration supplied by Freetronics.

Visualise microcontroller data with Megunolink Pro

Introduction

When the time comes to capture data from a microcontroller-based project, or control an embedded project via a PC – the thought of writing the appropriate PC software can give some people a headache. Or if you’re an Arduino or other development board user and are frustrated with the Serial Monitor box – where do you go? These problems and many more can be solved by using the Megunolink Pro software that’s the subject of this review.

From the Megunolink website,

MegunoLink Pro is a tool designed to aid embedded electronics designers. MegunoLink provides a set of tools to help visualize serial data, it is made up of a set of visualizers that each have a unique function and any number of them can be utilized at once. With these visualizers and our functional tabbed and docked interface you can create a full control center for your embedded project. Plot, log and monitor serial streams from both hardwired, bluetooth, and network based (UDP) devices.

The user interface allows for a completely customized layout with many different visualisers displaying information at once. Perfect for developing exciting new microcontroller based designs. Data streams go from hard to follow serial messages to easy to interpret tables and interactive plots. The interface panel allows you to set up custom GUI elements that let you take control of your device from the comfort of your PC screen.

Phil from Megunolink gives us a quick demonstration in the following video:

Installation

Getting Megunolink running takes around ten minutes. You’ll need a recent PC running Windows of some variety (XP/ 2003/Vista/Win7/8) and also .NET Framework v4.0. You can download a trial Pro version which operates for seven days – at which point you can use the “lite” version or purchase a Pro license. The Megunolink team have given our readers a discount on the personal version, use the coupon code “TROMLP” for 30% off.

Operation

Using Megunolink is quite simple, even though there’s a whole pile of functions. From the home page there’s a variety of documentation for all of the software features, so you can get started very quickly. You can simply capture all output from the serial line and have it saved to a text file (and with a time/date stamp, which removes the need for a RTC in the hardware) – something which seems quite simple but not done with the Arduino IDE:

rtccapture

Furthermore there is an “upload monitor” in Megunolink – which can automatically disconnect from the COM: port used by an Arduino when you need to upload a new sketch, then reconnect afterward. This saves a lot of to-and-fro between the two programs when adjusting code.

The key to analysing data from the microcontroller is to insert text notes in the serial output, which are then interpreted by Megunolink for display purposes. For example, if you have your MCU code send labels with the data, Megunolink can then sort these out into channels and graph the data, for example:

timeplot_screencapture

An example Arduino sketch is provided to demonstrate this, and it translates to other development platforms. Another great feature is the ability to create a graphical user interface for projects connected to the PCB. You design the GUI which can include buttons, sliders and numeric fields, for example:

controls

… and each of which send values of your choice to the device via USB. Then it’s a simple matter of coding your device to respond to the serial commands.

Real-time mapping

As mentioned in the video above, there’s also mapping support – your hardware sends GPS coordinates and they’re displayed in a real-time window:

mapping

Arduino programming

There’s also an interface to allow programming of an Arduino with .hex files via Megunolink. Currently it can work with the ATmega328, -2560, and with an external programmer -328P and -644 microcontrollers.

Conclusion

Once again Megunolink has proven to be a useful piece of software. It gives you a friendly and powerful connection to all the data from your microcontroller, and also a simple GUI for control via serial. So test it for yourself, it won’t cost you anything for the trial version. And if you like it – don’t forget about the tronixstuff.com discount on the personal version – use the coupon code “TROMLP” for 30% off. Finally, if you have any questions please contact Megunolink. And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

[Note – Megunolink Pro software license was a promotional consideration]

 

Tutorial – 74HC4067 16-Channel Analog Multiplexer Demultiplexer

Introduction

Now and again there’s a need to expand the I/O capabilities of your chosen micorocontroller, and instead of upgrading you can often use external parts to help solve the problem. One example of this is the 74HC4067 16-channel analog multiplexer demultiplexer. That’s a mouthful – however in simple form it’s an IC that can direct a flow of current in either direction from one pin  to any one of sixteen pins. Another way to think abou it is that you can consider the 74HC4067 to be a digital replacement to those rotary switches that allow you to select one of sixteen positions.

Here’s an example of the SMD version:

74HC4067

Don’t let that put you off, it’s just what we had in stock at the time. The part itself is available in through-hole and surface mount versions.

Using the 74HC4067

At this point you should download the data sheet, as we refer to it through the course of the article. The first thing to note is that the 74HC4067 can operate on voltages between 2 and 6V DC, which allows use with 3.3V and 5V microcontrollers and boards such as Arduino and Raspberry Pi. If for some reason you have the 74HCT4067 it can only work on 4.5~5.5V DC.  Next – consider the pinout diagram from the data sheet:

74HC4067 pinoutThe power supply for the part is applied to pin 24, and GND to … pin 12. Pin 15 is used to turn the control the current flow through the inputs/outputs – if this is connected to Vcc the IC stops flow, and when connected to GND it allows flow. You can always control this with a digital output pin if required, or just tie it to GND if this doesn’t matter.

Next – pin one. This is where the current either flows in to be sent to one of the sixteen outputs – or where the current flows out from one of the sixteen inputs. The sixteen inputs/outputs are labelled I0~I15. Finally there are the four control pins – labelled S0~S3. By setting these HIGH or LOW (Vcc or GND) you can control which I/O pins the current flow is directed through. So how does that work? Once again – reach for the the data sheet and review the following table:

74HC4067 truth tableNot only does it show what happens when pin 15 is set to HIGH (i.e. nothing) it shows what combination of HIGH and LOW for the control pins are required to select which I/O pin the current will flow through. If you scroll down a bit hopefully you noticed that the combination of S0~S3 is in fact the binary equivalent of the pin number – with the least significant bit first. For example, to select pin 9 (9 in binary is 1001) you set the IC pins S0 and S3 to HIGH, and S1 and S2 to LOW. How you control those control pins is of course up to you – either with some digital logic circuit for your application or as mentioned earlier with a microcontroller.

Limitations 

Apart from the power supply requirements, there are a few limitations to keep in mind. Open you data sheet and consider the “DC Electrical Specifications” table. The first two parameters show what the minimum voltage that can be considered as a HIGH and the maximum for a LOW depending on your supply voltage. The next item of interest is the “ON” resistance – that is the resistance in Ohms (Ω) between one of the sixteen inputs/outputs and the common pin. When a channel is active, and a 5V supply voltage, we measured a resistance of 56Ω without a load through that channel – and the data sheet shows other values depending on the current load and supply voltage. Finally, don’t try and run more than 25 mA of current through a pin.

Examples

Now to show an example of both multiplexing and demultiplexing. For demonstration purposes we’re using an Arduino Uno-compatible board with the 74HC4067 running from a 5V supply voltage. Pin 15 of the ‘4067 is set to GND, and control pins S0~S3 are connected to Arduino digital output pins D7~D4 respectively.

Multiplexing

This is where we select one input pin of sixteen and allow current to flow through to the common pin (1). In this example we connect the common pin to the board’s analog input pin – so this can be used as a method of reading sixteen analog signals (one at a time) using only one ADC. When doing so – take note of the limitations mentioned earlier – take some resistance measurements in your situation to determine what the maximum value will be from your ADC and calibrate code accordingly.

With both of the examples we’ll use port manipulation to control the digital pins which are connected to the 74HC4067’s control pins. We do this as it reduces the code required and conceptually I feel it’s easier. For example – to select I/O 15 you need to turn on all the control pins – so you just have to set Arduino PORTD to B11110000 (which is binary 15 LSB first) and much neater than using four digitalWrite() functions.

In the following example sketch, you can see how we’ve put the binary values for each control possibility in the array byte controlPins[] – which is then used to set the pins easily in void loop().

This simply sets each input pin in turn, then reads the ADC value into an array – whose values are then sent to the serial monitor:

… and a quick video of the results:

Demultiplexing

Now for the opposite function – sending current from the common pin to one of sixteen outputs. A fast example of this is by controlling one of sixteen LEDs each connected to an output pin, and with 5V on the 74HC4067 common pin. We don’t need current-limiting resistors for the LEDs due to the internal resistance in the 74HC4067. Here’s the sketch:

… and the LEDs in action:

Conclusion

If you’re considering the 74HC4067 or hadn’t known about it previously, we hope you found this of interest. If you have any questions please leave them below or privately via the contact page. And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

 

Review – adafruit industries Mini 8×8 LED Matrix with I2C backpack

Introduction

In this review we have a look at the mini 8×8 LED matrix with I2C backpack from adafruit industries. It looked like a small yet versatile display unit for a couple of project ideas, so as part of the evaluation we’ll run through it with you here. As you can see below, it’s quite small with a 20mm square matrix:

contents

The matrix and the controller are seperate which gives you the option of ordering different colours of matrix. Using LED matrices can be a pain, however these units use the Holtek 16K33 controller IC (data sheet) which has an I2C interface – much easier than the usual mess of shift registers and I/O pins:

holtek

 Furthermore you can change the I2C address using the solder pads on the PCB, giving you four possible options. And as it’s I2C, you can use it with other microcontrollers with a little detective work. Moving forward, we’ll assemble the display then explain how to use it with an Arduino, and show a few demonstrations.

Assembly

There really isn’t anything major to do, just solder the matrix to the backpack and some header pins if you need them. adafruit include some however I’m using the 90-degree ones for my own use:

solderingpins

The soldering should take about one minute tops, and then you’re done:

finished

Using the matrix

From a hardware perspective you only have four wires – 5V, GND, SDA and SCL. Yes – it’s a 5V part, so all you Raspberry Pi fans will need a level shifter, which you can get from adafruit as well. Anyhow once you’ve got it connected to your Arduino, a couple of libraries are required – the matrix and GFX libraries. Be sure to install them in your sketchbook/libraries folder and not the usual location. When saving the library files, call the first folder Adafruit_LEDBackpack and the second Adafruit_GFX as they don’t arrive in that format.

Now for a quick demonstration, it’s simply one from the included library. The display is very bright, so I had to reduce the exposure on the camera which makes the background a little dark – but you get the idea:

A pair of those fitted to a dummy or doll would be quite interesting, or make good eyes for a 21st century “Metal Mickey”. Well that’s quite interesting, so how do you in fact display things on the matrix? I’ve deconstructed a few examples to show you how it’s done.

No matter what, you need to include the libraries, define the matrix object in the sketch and then start it with the matching I2C address – for example:

To scroll text across the display, modify the following chunk of code:

First, the setRotation() value is 0~3 and determines which way the text scrolls across the screen. This is useful if you mount the matrix in different positions, as you can still keep the text scrolling in a readable manner. Next, matrix.setTextWrap() – leave this as false,  as true displays each character and then just scrolls it in turn – looking rather odd. Now multiply the number of characters you want to display by 8, and replace the number -96 with negative your value and of course “Hello, world”. Finally follow with rest of the code. There’s a quick demonstration of this code in the sketch and video below:

 

Now for some graphics. You can define your own images (!) and store them in an array. Each arrays consists of eight bytes, each representing a row of the matrix. You can use binary to help visualise the results, for example:

and then to display that on the matrix, use the following:

… which resulted with:

crosshatch

To control individual pixels, send one or more of the following:

where x and y are the pixel’s coordinates (that fall between zero and seven), followed by:

Here’s a neat example sketch and video of a single pixel “running around the border”:

By this point you should be getting the hang of things now, so we’ll finish up with the last three graphic functions at once. To draw a line between x1, y1 and x2, y2 – use:

To draw a rectangle with corners at x1, y2, x2, y2 – use:

To draw a filled rectangle with corners at x1, y2, x2, y2 – use:

And to draw a circle with axis at x,y and a radius of r pixels – use:

Now we’ll put those functions into the following sketch and video:

 

If you want to get someone’s attention, you can blink whatever’s on the matrix at various frequencies – and of course turn it off. In the following function, use 0 for off, and 1~3 for different rates:

Finally, you can also adjust the brightness to one of sixteen levels (0~15) using:

That’s enough blinkiness for now. Remember the library is just shielding you from the raw I2C commands, so if you want to create your own functions or use a non-Arduino board – examine the library and the data sheet.

Conclusion

The backpack makes using the matrix an absolute breeze, and the library saves a lot of time and effort – leaving you to get on with creating your ideas into projects. You can get the matrix from adafruit and their distributors.

Full-sized images available on flickr.  And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

[Note – item purchased without notifying the supplier]

Kit review – Protostack ATmega32 Development Kit

Introduction

For those of you prototyping with larger Atmel AVR microcontrollers such as the ATmega32, it can be inconvenient to continually assemble a circuit onto a solderless breadboard that includes power, programming header and a few basics – or you might want to create a one-off product without waiting for a PCB to be made. If these are issues for you, or you’re interested in working with AVRs  then the subject of this review may be of interest – the ATmega32 Development Kit from Protostack. The kit is one of a range that spans from the ATmega8, and gives you almost everything needed to work with the microcontroller. We’ve assembled and experimented with the ATmega32 kit, so read on to find out more.

Assembly

The kit arrives in a typical anti-static package with the contents and URL on the front:

packaging

The PCB is large, measuring 127 x 94 mm, made from heavy 1.6 mm FR4 PCB and all the holes are through-plated. And as you can see from the images below, there’s plenty of prototyping space and power/GND rails:

pcbtop

pcbbottom

The included parts allow you to add a power supply, polyfuse, smoothing capacitors for the power, programmer socket, external 16 MHz crystal, a DC socket, IC socket, a lonely LED and of course the ATmega32A (which is a lower-power version of the ATmega32):

parts

You can download the user guide from the product page, which details the board layout, schematic and so on. When soldering the parts in, just start with the smallest-profile parts first and work your way up. There’s a few clever design points, such as power regulator – there’s four holes so you can use both “in-GND-output” and “GND-output-input” types:

igo

… and the layout of the prototyping areas resemble that of a solderless breadboard, and the power/GND rails snake all around – so transferring projects won’t be difficult at all:

protoarea

If you need to connect the AVcc to Vcc, the components and board space are included for a low-pass filter:

lowpass

And if you get carried away and need to use two or more boards at once – they’re stackable:

stacking

Moving forward

After assembling the board and inserting the ATmega32, you can use an AVR programmer to check it’s all working (and of course program it). With a 10-pin interface USBASP inserted, I headed over to the AVRdude folder on my PC and entered:

which (as all was well) resulted with:

avrdudetest2

Awesome – it’s nice to have something that just works. Let the experimenting begin!

Conclusion

It’s a solid kit, the PCB is solid as a rock, and it worked. However it could really have used some spacers or small rubber feet to keep the board off the bench. Otherwise the kit is excellent, and offers a great prototyping area to work with your projects. If you order some, Protostack have a maximum delivery charge of $9 so you won’t get burned on delivery to far-flung places.  Larger photos available on flickr. And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

LEDborder

Please note that the ATMEGA32A Development Kit in this review is a promotional consideration from Protostack.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.