Tutorial – Arduino and TFT Color Touch Screen

Learn how to use an inexpensive TFT colour  touch LCD shield with your Arduino. This is chapter twenty-nine of our huge Arduino tutorial series.

Updated 07/02/2014

There are many colour LCDs on the market that can be used with an Arduino, and in this tutorial we’ll explain how to use a model that is easy to use, has a touch screen, doesn’t waste all your digital output pins – and won’t break the bank. It’s the 2.8″ TFT colour touch screen shield from Tronixlabs:

Arduino TFT colour touch shield front

And upside down:

Arduino TFT colour touch shield back

As you can imagine, it completely covers an Arduino Uno or compatible board, and offers a neat way to create a large display or user-interface.  The display has a resolution of 320 x 240 pixels, supports up to 65536 colours and draws around 250mA of current from the Arduino’s internal 5V supply. 

And unlike other colour LCDs, this one doesn’t eat up all your digital output pins – it uses the SPI bus for the display (D10~D13), and four analogue pins (A0~A3) if you use the touch sensor. However if you also use the onboard microSD socket more pins will be required. 

With some imagination, existing Arduino knowledge and the explanation within you’ll be creating all sorts of displays and interfaces in a short period of time. Don’t be afraid to experiment!

Getting started

Setting up the hardware is easy – just plug the shield on your Arduino. Next, download the library bundle from here. Inside the .zip file is two folders – both which need to be copied into your …\Arduino-1.0.x\libraries folder. Then you will need to rename the folder “TFT_Touch” to “TFT”. You will notice that the Arduino IDE already contains a library folder called TFT, so rename or move it.

Now let’s test the shield so you know it works, and also to have some quick fun. Upload the paint example included in the TFT library – then with a stylus or non-destructive pointer, you can select colour and draw on the LCD – as shown in this video. At this point we’d like to note that you should be careful with the screen – it doesn’t have a protective layer.

Afraid the quality of our camera doesn’t do the screen any justice, however the still image looks better:

Arduino TFT colour touch shield paint demonstration

Using the LCD 

Moving on, let’s start with using the display. In your sketches the following libraries need to be included using the following lines before void setup():

… and then the TFT library is initialised in void setup()

Now you can use the various functions to display text and graphics. However you first need to understand how to define colours.

Defining colours

Functions with a colour parameter can accept one of the ten ten predefined colours – RED, GREEN, BLUE, BLACK, YELLOW, WHITE, CYAN, BRIGHT_RED, GRAY1 and GRAY2, or you can create your own colour value. Colours are defined with 16-but numbers in hexadecimal form, with 5 bits for red, 6 for green and 5 for blue – all packed together. For example – in binary:

These are called RGB565-formatted numbers – and we use these in hexadecimal format with our display. So black will be all zeros, then converted to hexadecimal; white all ones, etc. The process of converting normal RGB values to RGB565 would give an aspirin a headache, but instead thanks to Henning Karlsen you can use his conversion tool to do the work for you. Consider giving Henning a donation for his efforts.

Displaying text

There are functions to display characters, strings of text, integers and float variables:

In each of the functions, the first parameter is the variable or data to display; x and y are the coordinates of the top-left of the first character being displayed; and colour is either the predefined colour as explained previously, or the hexadecimal value for the colour you would like the text to be displayed in – e.g. 0xFFE0 is yellow.

The drawFloat() function is limited to two decimal places, however you can increase this if necessary. To do so, close the Arduino IDE if running, open the file TFTv2.cpp located in the TFT library folder – and search for the line:

… then change the value to the number of decimal places you require. We have set ours to four with success, and the library will round out any more decimal places. To see these text display functions in action,  upload the following sketch:

… which should result in the following:

Arduino TFT colour touch shield text

To clear the screen

To set the screen back to all black, use:

Graphics functions

There are functions to draw individual pixels, circles, filled circles, lines, rectangles and filled rectangles. With these and a little planning you can create all sorts of images and diagrams. The functions are:

The following sketch demonstrates the functions listed above:

… with the results shown in this video.

Using the touch screen

The touch screen operates in a similar manner to the other version documented earlier, in that it is a resistive touch screen and we very quickly apply voltage to one axis then measure the value with an analogue pin, then repeat the process for the other axis.

You can use the method in that chapter, however with our model you can use a touch screen library, and this is included with the library .zip file you downloaded at the start of this tutorial.

The library does simplify things somewhat, so without further ado upload the touchScreen example sketch included with the library. Open the serial monitor then start touching the screen. The coordinates of the area over a pixel being touch will be returned, along with the pressure – as shown in this video.

Take note of the pressure values, as these need to be considered when creating projects. If you don’t take pressure into account, there could be false positive touches detected which could cause mayhem in your project.

Now that you have a very simple method to determine the results of which part of the screen is being touched – you can create sketches to take action depending on the touch area. Recall from the example touch sketch that the x and y coordinates were mapped into the variables p.x and p.y, with the pressure mapped to p.z. You should experiment with your screen to determine which pressure values work for you.

In the following example, we don’t trigger a touch unless the pressure value p.z is greater than 300. Let’s create a simple touch-switch, with one half of the screen for ON and the other half for OFF. Here is the sketch:

What’s happening here? We divided the screen into two halves (well not physically…) and consider any touch with a y-value of less than 160 to be the off area, and the rest of the screen to be the on area. This is tested in the two if functions – which also use an and (“&&”) to check the pressure. If the pressure is over 300 (remember, this could be different for you) – the touch is real and the switch is turned on or off.

… and a quick demonstration video of this in action.

Displaying images from a memory card

We feel this warrants a separate tutorial, however if you can’t wait – check out the demo sketch which includes some example image files to use.


By now I hope you have the answer to “how do you use a touch screen LCD with Arduino?” and had some fun learning with us. You can get your LCD from Tronixlabs. And if you enjoyed this article, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a third printing!) “Arduino Workshop”.

visit tronixlabs.com

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, LCD, TFT, touch screen, tronixlabs, tronixstuff, tutorial

Tutorial – Arduino and ILI9325 colour TFT LCD modules

Learn how to use inexpensive ILI9325 colour TFT LCD modules in chapter fifty of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – A tutorial on the Arduino universe. The first chapter is here, the complete series is detailed here.


Colour TFT LCD modules just keep getting cheaper, so in this tutorial we’ll show you how to get going with some of the most inexpensive modules we could find. The subject of our tutorial is a 2.8″ 240 x 320 TFT module with the ILI9325 LCD controller chip. If you look in ebay this example should appear pretty easily, here’s a photo of the front and back to help identify it:

There is also the line “HY-TFT240_262k HEYAODZ110510” printed on the back of the module. They should cost less than US$10 plus shipping. Build quality may not be job number one at the factory so order a few, however considering the cost of something similar from other retailers it’s cheap insurance. You’ll also want sixteen male to female jumper wires to connect the module to your Arduino.

Getting started

To make life easier we’ll use an Arduino library “UTFT” written for this and other LCD modules. It has been created by Henning Karlsen and can be downloaded from his website. If you can, send him a donation – this library is well worth it. Once you’ve downloaded and installed the UTFT library, the next step is to wire up the LCD for a test.

Run a jumper from the following LCD module pins to your Arduino Uno (or compatible):

  • DB0 to DB7 > Arduino D0 to D7 respectively
  • RD > 3.3 V
  • RSET > A2
  • CS > A3
  • RW > A4
  • RS > A5
  • backlight 5V > 5V
  • backlight GND > GND

Then upload the following sketch – Example 50.1. You should be presented with the following on your display:

If you’re curious, the LCD module and my Eleven board draws 225 mA of current. If that didn’t work for you, double-check the wiring against the list provided earlier. Now we’ll move forward and learn how to display text and graphics.

Sketch preparation

You will always need the following before void setup():

and in void setup():

with the former command, change orientation to either LANDSCAPE to PORTRAIT depending on how you’ll view the screen. You may need further commands however these are specific to features that will be described below. The function .clrScr() will clear the screen.

Displaying Text

There are three different fonts available with the library. To use them add the following three lines before void setup():

When displaying text you’ll need to define the foreground and background colours with the following:

Where red, green and blue are values between zero and 255. So if you want white use 255,255,255 etc. For some named colours and their RGB values, click here. To select the required font, use one of the following:

Now to display the text use the function:

where text is what you’d like to display, x is the horizontal alignment (LEFT, CENTER, RIGHT) or position in pixels from the left-hand side of the screen and y is the starting point of the top-left of the text. For example, to start at the top-left of the display y would be zero. You can also display a string variable instead of text in inverted commas.

You can see all this in action with the following sketch – Example 50.2, which is demonstrated in the following video:

Furthremore, you can also specify the angle of display, which gives a simple way of displaying text on different slopes. Simply add the angle as an extra parameter at the end:

Again, see the following sketch – Example 50.2a, and the results below:

Displaying Numbers

Although you can display numbers with the text functions explained previously, there are two functions specifically for displaying integers and floats.

You can see these functions in action with the following sketch – Example 50.3, with an example of the results below:


Displaying Graphics

There’s a few graphic functions that can be used to create required images. The first is:.

which is used the fill the screen with a certain colour. The next simply draws a pixel at a specified x,y location:

Remember that the top-left of the screen is 0,0. Moving on, to draw a single line, use:

where the line starts at x1,y1 and finishes at x2,y2. Need a rectangle? Use:

where the top-left of the rectangle is x1,y1 and the bottom-right is x2, y2. You can also have rectangles with rounded corners, just use:

instead. And finally, circles – which are quite easy. Just use:

where x,y are the coordinates for the centre of the circle, and r is the radius. For a quick demonstration of all the graphic functions mentioned so far, see Example 50.4 – and the following video:

Displaying bitmap images

If you already have an image in .gif, .jpg or .png format that’s less than 300 KB in size, this can be displayed on the LCD. To do so, the file needs to be converted to an array which is inserted into your sketch. Let’s work with a simple example to explain the process. Below is our example image:


Save the image of the puppy somewhere convenient, then visit this page. Select the downloaded file, and select the .c and Arduino radio buttons, then click “make file”. After a moment or two a new file will start downloading. When it arrives, open it with a text editor – you’ll see it contains a huge array and another #include statement – for example:


Past the #include statement and the array into your sketch above void setup(). After doing that, don’t be tempted to “autoformat” the sketch in the Arduino IDE. Now you can use the following function to display the bitmap on the LCD:

Where x and y are the top-left coordinates of the image, width and height are the … width and height of the image, and name is the name of the array. Scale is optional – you can double the size of the image with this parameter. For example a value of two will double the size, three triples it – etc. The function uses simple interpolation to enlarge the image, and can be a clever way of displaying larger images without using extra memory. Finally, you can also display the bitmap on an angle – using:

where angle is the angle of rotation and cx/cy are the coordinates for the rotational centre of the image.

The bitmap functions using the example image have been used in the following sketch – Example 50.5, with the results in the following video:

Unfortunately the camera doesn’t really do the screen justice, it looks much better with the naked eye.

What about the SD card socket and touch screen?

The SD socket didn’t work, and I won’t be working with the touch screen at this time.


So there you have it – an incredibly inexpensive and possibly useful LCD module. Thank you to Henning Karlsen for his useful library, and if you found it useful – send him a donation via his page.


In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, bitmap, display, ILI9325, LCD, lesson, mega, TFT, tronixstuff, tutorial45 Comments

Tutorial: Arduino and TFT LCD

Old and now unsupported tutorial for 4D Systems 1.44″ TFT serial interface LCD.

Update 20/04/2013 

The Arduino library for this module hasn’t been updated to work with Arduino v1.0.1+ – so you need to use Arduino IDE v22 or v23. And the module itself has been discontinued. For the time being I’m leaving the tutorial here until a more suitable item can be used. We can’t help you with the 4D module

Nevertheless – if you have one – here’s the subject of the tutorial- the 4D Systems 1.44″ TFT serial interface LCD:

The LCD is an LED-backlit thin-film transistor type, resolution is 128 x 128 pixels, with an RGB colour range of 65536.

As an aside, this is a very powerful piece of hardware. The module not only contains a 1.44″ square TFT LCD, there is also a dedicated graphics processor and a microSD card interface. One can program the display processor in the same manner as another microcontroller platform for incredibly interesting results. For more information, please visit:


However in the spirit of keeping things simple, this article will focus on driving the LCD directly using our Arduino or compatible boards. There are two firmware versions of this module – the GFX and the SGC. We need to have the SGC firmware, as this allows control via the serial TX/RX pins from our Arduno board. If you have purchased the SGC module, you’re ready to go. Scroll down until you see “And we’re back…”. However if you have the GFX version, please read the following instructions on how to change your LCD’s firmware from GFX to SGC…

Changing the firmware from GFX to SGC

  • At the moment this process only seems available to users of Microsoft Windows. All complaints to 4D Systems.
  • Unfortunately this process may not work with an Arduino Mega board.
  • First of all, remove the ATmega328 from your Arduino board. Please be careful, use a chip puller if possible. We are going to use the board as a simple serial-USB converter;
  • Insert your LCD module into a solderless breadboard;
  • Connect Arduino pin 0 (RX) to display pin 7 (RX); connect Arduino pin 1 (TX) to display pin 8 (TX). [Yes – TX>TX, RX>RX];
  • Connect Arduino 5V to display pin 9; connect Arduino GND to display pin 6; your LCD should display the following:


  • Visit http://www.4dsystems.com.au/prod.php?id=46, download and open the PmmC Loader application; visit http://www.4dsystems.com.au/prod.php?id=120 and download the .pmmc file to your local drive;
  • Connect your Arduino board via USB to the computer; then run the PmmC loader application;
  • Select the appropriate COM: port, load in the .pmmc file, then click Load. The firmware update should take less than sixty seconds;
  • When finished, you will be presented with the following on the computer:


… and the following on your LCD:


  • At this point unplug the USB lead from your Arduino board and all leads into the Arduino board;
  • Re-insert the ATmega328 back into your Arduino board;
  • Reconnect the wires from the LCD module to the Arduino, but this time connect Arduino TX to LCD RX; and LCD TX to Arduino RX.
  • Now you have  the serial-interface SGC firmware model LCD.

And we’re back…

To control this LCD, it requires commands to be sent via Serial.write(), and such commands are in the form of hexadecimal numbers. (You see something new every day). You can download the reference book with all the commands:


and bypass the library by directly writing the hexadecimal numbers directly to the module.

However, to get up to speed as fast as possible we can use a library with more of the popular functions included. Kudos and thanks to Oscar Gonzalez for writing a very useful library. Download the library from:


and install into your ../Arduino-002x/libraries folder, then re-start the Arduino IDE if you had it running. You may be wondering why the library is named displayshield4d – the LCD manufacturer sells this LCD on an Arduino shield. Although that would be great for experimenting, one would need to purchase another standalone LCD if their project moved forward – myself included. So that’s why we’re using the bare LCD board.

To connect the LCD to our Arduino is very simple:

  • LCD pin 5 to Arduino RST;
  • LCD pin 6 to Arduino GND;
  • LCD pin 7 to Arduino D1;
  • LCD pin 8 to Arduino D0;
  • LCD pin 9 to Arduino 5V.

In the following examples we will demonstrate the various functions available in the library. As this is chapter 29, I will no longer explain the more basic functions or ideas that you should know by now, instead relying on comments within the sketch if it feels necessary. It can take a short moment for the LCD controller to process, so always put a short delay between functions.

When uploading a sketch to your Arduino you may need to disconnect the LCD from Arduino D0/D1 as it can interfere with the serial process.

Firstly we will demonstrate text display. Initialising the display requires a few functions:

The second line creates an instance of lcd to be used with the relevant functions. Next, within void setup():

To write text to the LCD, the following function is required:

This line sets the font transparency. If we use the parameter OLED_FONT_TRANSPARENT the unused pixels in the character area will be transparent and continue to show what they were set to before the text was over-written with. You can also use OLED_FONT_OPAQUE, which blocks the item displayed “behind” the text.

Whenever a function requires a colour parameter, we use:

where x, y and z are numerical values (between 0 and 255) for the red, green and blue components of the required colour. If you need an RGB numerical reference, download this handy chart. Finally, to display some text we use the following:

The parameters required are:

  • a – the x-position of the first character. E.g. if this was a zero, the top-left pixel of the first character would be on the left-most pixel column of the LCD;
  • b – the y-position of the first character. e.g. if both a and b were zero, the text would start from the top-left of the LCD;
  • c – numerical code for the font to use: 1 is for 5×7 pixel characters, 2 for 8×8 and 3 for 8×12;
  • the three values within the lcd.RGB() function determine the colour of the text;
  • d – x-axis resolution multiplier. E.g. if you double this and use the 5×7 font, the characters will be double-width;
  • e – y-axis resolution multiplier.

Now let’s see this in action with the following sketch:

And a short video clip of the example in action: – http://www.youtube.com/watch?v=t3yypXL022w

As you can see the display update speed is much better than the LCD from the previous chapter. Although this example was short, don’t be afraid to try out your own parameters in the example sketch.

Next we will demonstrate the various graphics functions in the library. Creating graphics isn’t rocket science, it just takes some imagination (something I admit to lacking) and following the parameters for each function. Our first is

which places a pixel on the screen at location x,y of colour described using lcd.RGB(). Next we have

which draws a line from x1, y1 to x2, y2 of colour rgb. One can also create rectangles and so on using

This will create a rectangle with the top-left point at x,y; width is l pixels, height is h pixels, and a new parameter z. If z is 0, the function will draw a solid shape, if z is 1, it will display only a wire-frame rectangle with a pixel width of one. Circles are created using

where x and y are the coordinates for the centre of the circle, r is the radius, and z is the solid/wireframe parameter. And finally – triangles:

This will draw a triangle with the corners at the coordinate parameters; z again is the solid/wireframe parameter. However you need to order the corners in an anti-clockwise order. This will become evident in the example sketch below. In this example we run through the graphical functions described above. By following through the sketch you should gain an idea of how the graphical functions are used, in order to create your own displays.

And here is the video of example 29.2 in action … brought to you by Mr Blurrycam: – http://www.youtube.com/watch?v=BKy-GuKWGZ8


Posted in 4d systems, arduino, education, LCD, learning electronics, lesson, microcontrollers, TFT, tutorial

Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: