Tag Archive | "7219"

Review – Maxim MAX7219 LED Display Driver IC

[Updated 16/052013]

[After this article, check out our examination of real and fake MAX7219s]

In this article we are going to examine the Maxim MAX7219 LED display driver IC***. The reason for doing so is to show you how something that used to be quite complex can be made very simple – and that is what all this technology is for, isn’t it?

*** There is another IC from Austria Microsystems – the AS1107, which is drop-in compatible with the MAX7219, and can be cheaper. So shop around!

If you have ever tried to control lots of LEDs, or more than two or three 7-segment displays, or even an LED matrix, you realise that there is quite a lot of work to do on the software and hardware side of things. It usually involves lots of shift registers, switching transistors, and some nifty coding to get everything working. And then your code is too large, so the resulting display scans slow enough to see it flicker, etc.

Not any more! The MAX7219 combined with a great library (well for Arduino anyway) solves all the headaches in no time. After using it for the first time today I was briefly angry for not finding out about it sooner… better late than never. First of all, let’s have a look:

max7219sm

Yes, at first glance you may think that it takes a lot of real estate, but it saves some as well. This chip can completely control 64 individual LEDs, including maintaining equal brightness, and allowing you to adjust the brightness of the LEDs either with hardware or software (or both). It can refresh the LEDs at around 800 Hz, so no more flickering, uneven LED displays. You can even switch the display off for power saving mode, and still send it data while it is off. And another good thing – when powered up, it keeps the LEDs off, so no wacky displays for the first seconds of operation.

For more technical information, here is the data sheet: MAX7219.pdf. Now to put it to work for us – this article will demonstrate using an 8 x 8 LED matrix, as well as 8 digits of 7-segment LED numbers. First of all, let’s examine the hardware side of things. Here is the pinout diagram for the IC:

7219pinouts

At this point I should mention it is designed for common-cathode display systems. One example would be an LED matrix, such as:

Another example is a multi-digit 7-segment LED module – current flows in through the anode pins, and each digit is illuminated only when its cathode is connected to ground. Such as this unit:

4dig7segsmall

It has input pins for each of the eight LED elements, and four cathode pins, one for each digit. We can use two of these displays with the MAX7219 very easily, as you will see below. An example circuit to demonstrate using the matrix is below. Note the lack of resistors and transistors:

matrixschematic2

When using with (for example) an Arduino-type board, you would connect serial data in, clock, and load to three digital pins. The resistor is the hardware control via limiting current to the LEDs. My examples use a 1k0 1/4-watt value. If you are going to experiment with this value, refer to page 10 of the data sheet first. Furthermore, ensure the ground of the MAX7219 is connected to the ground of the microcontroller. The capacitors are used to reduce supply current ripple. And here is the demonstration circuit on the breadboard:

matrixbbsm

In the above photo, the five wires on the left are connected to the Arduino board (5V, GND, load, clock, data). The two wires from the terminal block head to a 5v power supply.

Now it is time to examine the software aspect, or how to control the MAX7219. My knowledge of microcontrollers is currently only Arduino, so we will use that for this review. Thankfully there is an excellent library that has been specifically written for the MAX7219 – the LedControl library. You will need to download and install the library from the LedControl page. If you need guidance on installing a library, please visit here.

The author has done a marvellous job of documenting his library, so I will briefly describe the basic functions you need to get things blinking. Here is a very basic demonstration sketch:

Using the lc.setLed() saves a lot of code, as the chip will hold the display on until it is told otherwise, you don’t need to program in a delay loop. You can just enter X and Y coordinates for the LED to switch on. To switch off the display to save power, use lc.shutdown(0, true); – replace true with false to switch it back on again. The video clip below is more of a detailed demonstration, using the schematic above, and this sketch:

Notice how altering the brightness up and down causes a nice “breathing” affect. However, don’t run that type of thing for too long, the MAX7219 does warm up nicely after about ten minutes of running all LEDs at once at full brightness…

Now it is time to examine how the MAX7219 deals with seven-segment LED display modules. It can handle up to eight digits, so I have two four-digit display modules to use. The anodes will be connected, so they behave as one single eight -digit unit. Here is the schematic:

7segschematic

And here is the demonstration circuit on the breadboard:

7segbbsm

Now to examine the functions to control these displays. Once again, be sure to have the LedControl library as used with the matrix. Here is another simple sketch:

Once again, the use of the LedControl library certainly makes things easier. The difference between setChar() and setDigit is that the former can also write A~F, space, and a few other letters that are legible when used with a 7-segment display. Here is a video of the above sketch in action:

As you can see, driving all those LED digits is now a piece of cake. To think twenty years ago we used to muck about with various 4000-series ICs, decimal to BCD converters and so on. The MAX7219 just does it all. Now that I have learned how to make a nice huge display – there is only one thing to do… make another clock! It uses an Arduino board, and my RTC shield. Here is the sketch: maxclock.pdf, and the clock in action:

Well that’s enough blinkiness for now, I could spend a week making displays with the MAX7219. In all honesty, I can say that it makes life exponentially easier when trying to control more than one LED with a microcontroller. Therefore it really is highly recommended. So have fun!

If you found this article interesting, you would also enjoy the reviews of TM1638 and TM1640 LED display modules.

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, as1107, COM-09622, lesson, max7219, part review, tutorial


Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: