Tag Archives: access

Arduino Tutorials – Chapter 15 – RFID

Learn how to use RFID readers with your Arduino. In this instalment we use an RDM630 or RDM6300 RFID reader. This is chapter fifteen of our huge Arduino tutorial seriesUpdated 19/11/2013


RFID – radio frequency identification. Some of us have already used these things, and they have become part of everyday life. For example, with electronic vehicle tolling, door access control, public transport fare systems and so on. It sounds complex – but isn’t.

To explain RFID for the layperson, we can use a key and lock analogy. Instead of the key having a unique pattern, RFID keys hold a series of unique numbers which are read by the lock. It is up to our Arduino sketch to determine what happens when the number is read by the lock.  The key is the tag, card or other small device we carry around or have in our vehicles. We will be using a passive key, which is an integrated circuit and a small aerial. This uses power from a magnetic field associated with the lock. Here are some key or tag examples:

Arduino RFID tags

In this tutorial we’ll be using 125 kHz tags – for example. To continue with the analogy our lock is a small circuit board and a loop aerial. This has the capability to read the data on the IC of our key, and some locks can even write data to keys. Here is our reader (lock) example:

Seeedstudio RFID reader Arduino

These readers are quite small and inexpensive – however the catch is that the loop aerial is somewhat fragile. If you need something much sturdier, consider the ID20 tags used in the other RFID tutorial.

Setting up the RFID reader

This is a short exercise to check the reader works and communicates with the Arduino. You will need:

Simply insert the RFID reader main board into a solderless breadboard as shown below. Then use jumper wires to connect the second and third pins at the top-left of the RFID board to Arduino 5V and GND respectively. The RFID coil connects to the two pins on the top-right (they can go either way). Finally, connect a jumper wire from the bottom-left pin of the RFID board to Arduino digital pin 2:

Arduino RFID reader setup

Next, upload the following sketch to your Arduino and open the serial monitor window in the IDE:

If you’re wondering why we used SoftwareSerial – if you connect the data line from the RFID board to the Arduino’s RX pin – you need to remove it when updating sketches, so this is more convenient.

Now start waving RFID cards or tags over the coil. You will find that they need to be parallel over the coil, and not too far away. You can experiment with covering the coil to simulate it being installed behind protective surfaces and so on. Watch this short video which shows the resulting RFID card or tag data being displayed in the Arduino IDE serial monitor.

As you can see from the example video, the reader returns the card’s unique ID number which starts with a 2 and ends with a 3. While you have the sketch operating, read the numbers from your RFID tags and note them down, you will need them for future sketches.

To do anything with the card data, we need to create some functions to retrieve the card number when it is read and place in an array for comparison against existing card data (e.g. a list of accepted cards) so your systems will know who to accept and who to deny. Using those functions, you can then make your own access system, time-logging device and so on.

Let’s demonstrate an example of this. It will check if a card presented to the reader is on an “accepted” list, and if so light a green LED, otherwise light a red LED. Use the hardware from the previous sketch, but add a typical green and red LED with 560 ohm resistor to digital pins 13 and 12 respectively. Then upload the following sketch:

In the sketch we have a few functions that take care of reading and comparing RFID tags. Notice that the allowed tag numbers are listed at the top of the sketch, you can always add your own and more – as long as you add them to the list in the function checkmytags() which determines if the card being read is allowed or to be denied.

The function readTags() takes care of the actual reading of the tags/cards, by placing the currently-read tag number into an array which is them used in the comparison function checkmytags(). Then the LEDs are illuminated depending on the status of the tag at the reader. You can watch a quick demonstration of this example in this short video.


After working through this chapter you should now have a good foundation of knowledge on using the inexpensive RFID readers and how to call functions when a card is successfully read. For example, use some extra hardware (such as an N-MOSFET) to control a door strike, buzzer, etc. Now it’s up to you to use them as a form of input with various access systems, tracking the movement of people or things and much more.

And if you enjoyed the tutorial, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a third printing!) “Arduino Workshop” from No Starch Press.


In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Project – Simple RFID access system

In this tutorial you can make an RFID access system. It’s very simple and can be used with a wide variety of end-uses.

Updated 18/03/2013

The purpose of this project is to prototype a basic RFID access system. Although it is not that complicated, this article is my response to a kit reviewed in the Australian “Silicon Chip” (November 2010) electronics magazine. Their article describes the kit in detail – operation, schematic, use and installation. However the code for the microcontroller (PIC16F628A)  is not published due to the kit manufacturer holding copyright over the design.

This is a shame, as many organisations have been quite successful selling open-source kits. So instead of moaning about it, I have created my own design that matches the operation of the original, instead using the ATmega328 MCU with Arduino bootloader. Consider this a basic framework that you can modify for your own access system, or the start of something more involved.


There are pros and cons with the original vs. my version. The biggest pro is that you can buy the whole kit for around Au$40 including a nice PCB, solder it together, and it works. However if you want to do it yourself, you can modify it to no end, and have some fun learning and experimenting along the way. So let’s go!

The feature requirements are few. The system must be able to learn and remember up to eight RFID access tags/cards, etc – which must be able to be altered by a non-technical user. Upon reading a card, the system will activate a relay for a period of time (say 1 second) to allow operation of a door strike or electric lock. Finally, the RFID tag serial numbers are to be stored in an EEPROM in case of a power outage. When a tag is read, a matching LED (1~8) will show which tag was read. There are also two LEDs, called “Go” and “Stop” which show the activation status. The original kit has some more LEDs, which I have made superfluous by blinking existing LEDs.

This is a simple thing to make, and the transition from a solderless breadboard to strip board will be easy for those who decide to make a permanent example. But for now, you can follow with the prototype. First is the parts list:

  • Atmel ATmega328 with Arduino bootloader;
  • 16 MHz resonator (X1 in schematic);
  • ten LEDs of your choice;
  • two normally-open push buttons;
  • two 560 ohm resistors (all resistors 1/4 watt);
  • one 1k ohm resistor;
  • three 10k ohm resistors;
  • one BC548 transistor;
  • three 0.01 uF monolithic capacitors;
  • one 100 uF electrolytic capacitor;
  • one 1N4004 diode;
  • Microchip 24LC256 EEPROM;
  • 125 kHZ RFID module;
  • 125 kHz RFID tags/cards;
  • connecting wire;
  • large solderless breadboard;
  • LM7805 power regulator;
  • relay of your choice with 5V coil (example).

When selecting a relay, make sure it can handle the required load current and voltage – and that the coil current is less than 100mA.

If attempting to switch mains voltage/current – contact a licensed electrician. Your life is worth more than the money saved by not consulting an expert.

And here is the schematic (large version):


Here is the prototype on the solderless breadboard. For demonstration purposes an LED has been substituted for the transistor/relay section of the circuit, the power regulator circuitry has not been shown, and there are superfluous 4.7k resistors on the I2C bus. To program the software (Arduino sketch) the easiest way is by inserting the target IC into an Arduino-compatible board, or via a 5V FTDI cable and a basic circuit as described here.


The Arduino sketch is also quite simple. The main loop calls the procedure readTags() to process any RFID tag read attempts, and then monitors button A – if pressed, the function learnTags() is called to allow memorisation of new RFID tags. Each tag serial number consists of 14 decimal numbers, and these are stored in the EEPROM sequentially. That is, the first tag’s serial number occupies memory positions 0~13, the second tag’s serial number occupies memory position 14~28, and so on. Two functions are used to read and write tag serial numbers to the EEPROM – readEEPROMtag() and writeEEPROMtag().

The EEPROM is controlled via the I2C bus. For a tutorial about Arduino, I2C bus and the EEPROM please read this article. For a tutorial about Arduino and RFID, please read this article. The rest of the sketch is pretty self-explanatory. Just follow it along and you can see how it works. You can download the sketch from hereAnd finally, a quick video demonstration:

So there you have it. I hope you enjoyed reading about this small project and perhaps gained some use for it of your own or sparked some other ideas in your imagination that you can turn into reality.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.