Tag Archive | "analogue"

Tutorial – Arduino and the TI ADS1110 16-bit ADC

Learn how to use the TI ADS1110 16-bit ADC with Arduino in chapter fifty-three of my Arduino Tutorials. The first chapter is here, the complete series is detailed here.

Updated 02/07/2013


Moving on from the last chapter where we explained an 8-bit ADC, in this instalment we have the Texas Instruments ADS1110 – an incredibly tiny but useful 16-bit analogue-to-digital converter IC.  It can operate between 2.7 and 5.5 V so it’s also fine for Arduino Due and other lower-voltage development boards. This is a quick guide to get you going with the ADS1110 ready for further applications. Before continuing any further, please download the data sheet (pdf) as it will be useful and referred to during this tutorial. The ADS1110 gives you the option of a more accurate ADC than offered by the Arduino’s 10-bit ADCs – and it’s relatively easy to use. The only block for some is the package type – it’s only available in SOT23-6:

So unless you’re making a customised PCB, some sort of breakout will be required. One useful example is the Schmartboard we reviewed earlier:


The ADS1110 uses the I2C bus for communication, so if this is new to you – please review the I2C tutorials before continuing. And as there’s only six pins you can’t set the bus address – instead, you can select from six variants of the ADS1110 – each with their own address (see page two of the data sheet). As you can see the in the photo above, ours is marked “EDO” which matches to the bus address 1001000 or 0x48h. And with the example circuits we’ve used 10kΩ pull-up resistors on the I2C bus. You can use the ADS1110 as either a single-ended or differential ADC –  But first we need to examine the configuration register which is used to control various attributes, and the data register.

Configuration register

Turn to page eleven of the data sheet. The configuration register is one byte in size, and as the ADS1110 resets on a power-cycle – you need to reset the register if your needs are different to the defaults. The data sheet spells it out quite neatly… bits 0 and 1 determine the gain setting for the PGA (programmable gain amplifier). If you’re just measuring voltages or experimenting, leave these as zero for a gain of 1V/V. Next, the data rate for the ADS1110 is controlled with bits 2 and 3. If you have continuous sampling turned on, this determines the number of samples per second taken by the ADC.

After some experimenting with an Arduino Uno we found the values returned from the ADC were a bit off when using the fastest rate, so leave it as 15 SPS unless required otherwise. Bit 4 sets either continuous sampling (0) or one-off sampling (1). Ignore bits 5 and 6, however they’re always set as 0. Finally bit 7 – if you’re in one-off sampling mode, setting it to 1 requests a sample – and reading it will tell you if the returned data is new (0) or old (1). You can check that the value measured is a new value – if the first bit of the configuration byte that comes after the data is 0, it’s new. If it returns 1 the ADC conversion hasn’t finished.

Data register

As the ADS1110 is a 16-bit ADC, it returns the data over two bytes – and then follows with the value of the configuration register. So if you request three bytes the whole lot comes back. The data is in “two’s complement” form, which is a method of using signed numbers with binary. Converting those two bytes is done by some simple maths. When sampling at 15 SPS, the value returned by the ADS1110 (not the voltage)  falls between -32768 and 32767. The higher byte of the value is multiplied by 256, then added to the lower byte – which is then multiplied by 2.048 and finally divided by 32768. Don’t panic, as we do this in the example sketch below.

Single-ended ADC mode

In this mode you can read a voltage that falls between zero and 2.048 V (which also happens to be the inbuilt reference voltage for the ADS1110). The example circuit is simple (from the data sheet):

singledemoDon’t forget the 10kΩ pull-up resistors on the I2C bus. The following sketch uses the ADS1110 in the default mode, and simply returns the voltage measured:

Once uploaded, connect the signal to measure and open the serial monitor – you’ll be presented with something similar to:


If you need to alter the gain of the internal programmable gain amplifier of the ADC – you’ll need to write a new byte into the configuration register using:

before requesting the ADC data. This would be 0x8D, 0x8E or 0x8F for gain values of 2, 4 and 8 respectively – and use 0x8C to reset the ADS1110 back to default.

Differential ADC mode

In this mode you can read the difference between two voltages that each fall between zero and 5 V. The example circuit is simple (from the data sheet):


We must note here (and in the data sheet) that the ADS1110 can’t accept negative voltages on either of the inputs. You can use the previous sketch for the same results – and the resulting voltage will be the value of Vin- subtracted from Vin+. For example, if you had 2 V on Vin+ and 1 V on Vin- the resulting voltage would be 1 V (with the gain set to 1).


Once again I hope you found this of interest, and possibly useful. And if you enjoy my tutorials, or want to introduce someone else to the interesting world of Arduino – check out my new book “Arduino Workshop” from No Starch Press.


In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in ADC, ads1110, arduino, converter, I2C, lesson, TI, tutorialComments (10)

Tutorial – Arduino and PCF8591 ADC DAC IC

Learn how to use the NXP PCF 8591 8-bit A/D and D/A IC with Arduino in chapter fifty-two of my Arduino Tutorials. The first chapter is here, the complete series is detailed here.

Updated 17/06/2013


Have you ever wanted more analogue input pins on your Arduino project, but not wanted to fork out for a Mega? Or would you like to generate analogue signals? Then check out the subject of our tutorial – the NXP PCF8591 IC. It solves both these problems as it has a single DAC (digital to analogue) converter as well as four ADCs (analogue to digital converters) – all accessible via the I2C bus. If the I2C bus is new to you, please familiarise yourself with the readings here before moving forward.

The PCF8591 is available in DIP form, which makes it easy to experiment with:


You can get them from the usual retailers. Before moving on, download the data sheet. The PCF8591 can operate on both 5V and 3.3V so if you’re using an Arduino Due, Raspberry Pi or other 3.3 V development board you’re fine. Now we’ll first explain the DAC, then the ADCs.

Using the DAC (digital-to-analogue converter)

The DAC on the PCF8591 has a resolution of 8-bits – so it can generate a theoretical signal of between zero volts and the reference voltage (Vref) in 255 steps. For demonstration purposes we’ll use a Vref of 5V, and you can use a lower Vref such as 3.3V or whatever you wish the maximum value to be … however it must be less than the supply voltage. Note that when there is a load on the analogue output (a real-world situation), the maximum output voltage will drop – the data sheet (which you downloaded) shows a 10% drop for a 10kΩ load. Now for our demonstration circuit:


Note the use of 10kΩ pull-up resistors on the I2C bus, and the 10μF capacitor between 5V and GND. The I2C bus address is set by a combination of pins A0~A2, and with them all to GND the address is 0x90. The analogue output can be taken from pin 15 (and there’s a seperate analogue GND on pin 13. Also, connect pin 13 to GND, and circuit GND to Arduino GND.

To control the DAC we need to send two bytes of data. The first is the control byte, which simply activates the DAC and is 1000000 (or 0x40) and the next byte is the value between 0 and 255 (the output level). This is demonstrated in the following sketch:

Did you notice the bit shift of the bus address in the #define statement? Arduino sends 7-bit addresses but the PCF8591 wants an 8-bit, so we shift the byte over by one bit. 

The results of the sketch are shown below, we’ve connected the Vref to 5V and the oscilloscope probe and GND to the analogue output and GND respectively:


If you like curves you can generate sine waves with the sketch below. It uses a lookup table in an array which contains the necessary pre-calculated data points:

And the results:


For the following DSO image dump, we changed the Vref to 3.3V – note the change in the maxima on the sine wave:


Now you can experiment with the DAC to make sound effects, signals or control other analogue circuits.

Using the ADCs (analogue-to-digital converters)

If you’ve used the analogRead() function on your Arduino (way back in Chapter One) then you’re already familiar with an ADC. With out PCF8591 we can read a voltage between zero and the Vref and it will return a value of between zero and 255 which is directly proportional to zero and the Vref. For example, measuring 3.3V should return 168. The resolution (8-bit) of the ADC is lower than the onboard Arduino (10-bit) however the PCF8591 can do something the Arduino’s ADC cannot. But we’ll get to that in a moment.

First, to simply read the values of each ADC pin we send a control byte to tell the PCF8591 which ADC we want to read. For ADCs zero to three the control byte is 0x00, 0x01, ox02 and 0x03 respectively. Then we ask for two bytes of data back from the ADC, and store the second byte for use. Why two bytes? The PCF8591 returns the previously measured value first – then the current byte. (See Figure 8 in the data sheet). Finally, if you’re not using all the ADC pins, connect the unused ones to GND.

The following example sketch simply retrieves values from each ADC pin one at a time, then displays them in the serial monitor:

Upon running the sketch you’ll be presented with the values of each ADC in the serial monitor. Although it was a simple demonstration to show you how to individually read each ADC, it is a cumbersome method of getting more than one byte at a time from a particular ADC.

To do this, change the control byte to request auto-increment, which is done by setting bit 2 of the control byte to 1. So to start from ADC0 we use a new control byte of binary 00000100 or hexadecimal 0x04. Then request five bytes of data (once again we ignore the first byte) which will cause the PCF8591 to return all values in one chain of bytes. This process is demonstrated in the following sketch:

Previously we mentioned that the PCF8591 can do something that the Arduino’s ADC cannot, and this is offer a differential ADC. As opposed to the Arduino’s single-ended (i.e. it returns the difference between the positive signal voltage and GND, the differential ADC accepts two signals (that don’t necessarily have to be referenced to ground), and returns the difference between the two signals. This can be convenient for measuring small changes in voltages for load cells and so on.

Setting up the PCF8591 for differential ADC is a simple matter of changing the control byte. If you turn to page seven of the data sheet, then consider the different types of analogue input programming. Previously we used mode ’00’ for four inputs, however you can select the others which are clearly illustrated, for example:


So to set the control byte for two differential inputs, use binary 00110000 or 0x30. Then it’s a simple matter of requesting the bytes of data and working with them. As you can see there’s also combination single/differential and a complex three-differential input. However we’ll leave them for the time being.


Hopefully you found this of interest, whether adding a DAC to your experiments or learning a bit more about ADCs. We’ll have some more analogue to digital articles coming up soon, so stay tuned. And if you enjoy my tutorials, or want to introduce someone else to the interesting world of Arduino – check out my new book “Arduino Workshop” from No Starch Press.


In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in ADC, arduino, beginnner, dac, differential, education, electronics, I2C, lesson, NXP, PCF8591, tronixstuff, tutorialComments (14)

Tutorial: Analog input for multiple buttons – Part Two

This is chapter forty-six of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – A tutorial on the Arduino universe. The first chapter is here, the complete series is detailed here.

[Updated 19/01/2013]

A while back I described how to read multiple buttons using only one analogue input pin. However we could only read one button at a time. In this instalment we revisit this topic and examine an improved method of doing so which allows for detecting more than one button being pressed at the same time. This method is being demonstrated as it is inexpensive and very easy to configure.

(For a more exact and expensive method please consider the use of the Microchip MCP23017 which allows for sixteen inputs via the I2C bus).

As you know the analogue input pins of the Arduino can read a voltage of between zero and five volts DC and return this measurement as an integer between zero and 1023. Using a small external circuit called a “R-2R ladder”, we can alter the voltage being measured by the analogue pin by diverting the current through one or more resistors by our multiple buttons. Each combination of buttons theoretically will cause a unique voltage to be measured, which we can then interpret in our Arduino sketch and make decisions based on the button(s) pressed.

First the circuit containing four buttons:


Can you see why this is called an R-2R circuit? When building your circuit – use 1% tolerance resistors – and check them with a multimeter to be sure. As always, test and experiment before committing to anything permanent.

Now to determine a method for detecting each button pressed, and also combinations. When each button is closed, the voltage applied to analogue pin zero will be different. And if two buttons are pressed at once, the voltage again will be different. Therefore the value returned by the function analogRead() will vary for each button-press combination. To determine these, I connected a numeric display to my Arduino-compatible board, then simply sent the analogRead() value to the display. You can see some of the results of this in the following video:

The analogRead() results of pressing every combination of button can be found in the following table:

After this experiment we now have the values returned by analogRead() and can use them in a switch… case function or other decision-making functions in our sketches to read button(s) and make decisions based on the user input. Unfortunately there was some overlap with the returned values and therefore in some cases not every possible combination of press will be available.

However, we’re still doing well and you can get at least eleven or twelve combinations still with only one analog input pin. You can add delay() functions in your sketch if necessary to take care of switch debouncing or do it with hardware if you feel it is necessary.

So now you have a more useful method for receiving input via buttons without wasting many digital input pins. I hope you found this article useful or at least interesting. This series of tutorials has been going for almost two years now, and may soon start to wind down – it’s time to move forward to the next series of tutorials.


Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, education, electronics, learning electronics, lesson, multiple buttons, tutorialComments (7)

Clock Kit Round-up – December 2011

Hello Readers

If there’s one thing that I really like it’s a good clock kit. Once constructed, they can be many things, including:

  • a point of differentiation from other items in the room;
  • a reminder of the past (nixie tubes!) or possible visions of the future;
  • the base of something to really annoy other people;
  • a constant reminder to get back to work;
  • a source of satisfaction from having made something yourself!

So just for fun I have attempted to find and list as many interesting and ‘out of the ordinary’ kits as possible, and ignored the simple or relatively mundane kits out there. If you are in the clock kit business and want a mention, let me know. So in no particular order, we have:

adafruit industries “ice tube” clock

Based around a vintage Soviet-era vacuum IV-18 type fluorescent display, the ice tube clock is a rare kit that includes a nice enclosure which keeps you safe from the high voltages as well as allowing the curious to observe your soldering skills. I reviewed this kit almost a year ago and the clock is still working perfectly. Here is a video of the ice tube clock in action:

After some travelling meeting various people it seems that quite a few of us have an ice tube clock. There is something quite mesmerising about the display, perhaps helping to recall memories of our youth in the 1970s and 80s.

nootropic design Defusable Clock Kit

As recently reviewed, this kit allows you to build a simulated ‘countdown’ timer for a hypothetical explosive device that also doubles as a clock with an alarm. For example:

Whatever you do, don’t make a ‘fake bomb’ and leave it out in public! Only bad things could happen 🙂

ogilumen nixie tube kits

Not a clock kit as such, however they have made doing it yourself very easy with their power supply and IN-12A nixie board kits. We made one ourselves in a previous review, as shown below:

Alan Parekh’s Multimeter Clock Kit

This is certainly one from left field – using the analogue multimeters to display hours, minutes and seconds. See Alan describe his kit in this video:

Certainly something different and would look great on the wall of any electronics-themed area or would easily annoy those who dislike the status-quo of clock design.

akafugu VFD Modular Clock

The team at akafugu have created a modular baseboard/shield kit which holds a shield containing four IV-17 alphanumeric nixie tubes to create your own clock or display system:


Unlike some of the other nixie tube kits the firmware has been made public and can be modified at will. In the future different display shields will be available to extend the use of the kit.

tubeclock.com kits

This site has two kits available, one using either four or six Soviet-era IN-12 type nixie tubes:


… and another kit using the Soviet-era IN-14 nixie tubes:

You have to hand it to the former Soviet Union – they knew how to over-produce nixie tubes. One rare example where we can benefit from a command economy!

evil mad science clocks

The certainly not evil people have two clock kits, the first being the Bulbdial Clock Kit:

This uses a unique ring of LEDs around the circumference of the clock face to create shadows to mark the time. It is also available in a range of housing and face styles. Their other kit of interest is the Alpha Clock Five:

The photo of this clock doesn’t do it justice – the alphanumeric displays are 2.3″ tall, making this one huge clock. It also makes use of a Chronodot real-time clock board, which contains a temperature-controlled oscillator  which helps give it an accuracy of +-/ 2 minutes per year. Furthermore you can modify this easily using an FTDI cable and the Arduino IDE with some extra software. Would be great for model railways (or even a real railway station) or those insanely conscious about the time.

Kabtronics Clock Kits

This organisation has several clock kits which span a range of technology from the later part of the twentieth century. These guys can only be true clock enthusiasts! Starting with the 1950s, they have their Nixie-Transistor Clock:


Look – no integrated circuits, leaving the kit true to the era. If you need to hide from someone for a weekend, building this would be a good start. Next we move onto the 1960s and the Transistor Clock:


The 1960s brought with it LEDs so they are now used in this kit, however the logic is still all analogue electronics. However next we can move to the 1970s, and finally save some board space with the TTL Clock:


This would still be fun to assemble but somewhat less punishing for those who don’t enjoy solder fumes that much. However you still have a nice kit and something to be proud of. Finally, the last in the line is the 1980s-themed Surface-Mount Technology Clock:


So here we have a microcontroller, SMT components, and a typical reduction in board size. Their range is an excellent way of demonstrating the advances in technology over the years.

The GPS FLW Display Clock

Wow – this clock makes use of huge Burroughs B7971 15-segment nixie tube displays and a GPS receiver to make a huge, old-style/new-tech clock. Check out the demonstration video:

This thing is amazing. And it is actually cheaper to buy a fully-assembled version (huh). The same organisation also offers another GPS-controlled clock using IN-18 nixie tubes:


Again, it isn’t inexpensive – however the true nixie tube enthusiasts will love it. This clock would look great next to a post-modern vintage hifi tube amplifier. Moving forward to something completely different now, we have the:

adafruit industries monochron®

Almost the polar opposite of the nixie-tube clocks, the monochron uses an ATmega328 microcontroller and a 128 x 64 LCD module to create some interesting clock effects. For example:

Many people have created a variety of displays, including space invaders and the pong game simulation. The clock also includes the laser-cut acrylic housing which provides a useful and solid base for the clock.

Spikenzie Labs Solder : Time™ watch kit

Technically this is a watch kit, however I don’t think that many people would want to walk around wearing one – but it could be used in more permanent or fixed locations. Correct me if I’m wrong people. However in its defence it is a very well designed kit that is easy to solder and produces a nice clock:

It uses a separate real-time controller IC to stay accurate, and the design However this would be a great suggestion as a gift for a younger person to help them become interesting in electronics and other related topics. The asm firmware is also available for you to modify using Microchip MPLAB software if that takes your fancy.

Velleman Kits

The Velleman company has a range of somewhat uninspiring clock kits, starting with the Scrolling/Rolling LED Clock:

… the 2¼” 7-Segment Digital Clock:

This clock includes the housing and also accepts an optional temperature sensor, and therefore can display this as well. There is also the aptly-named – Digital LED Clock:


It tells the time and would be useful in a 1980s-era idea of the future movie set. The final velleman clock kit is the Jumbo Single-Digit Clock:

In all fairness this one looks quite interesting – the LED display is 57mm tall and the time is display one digit at a time. It is powered by a PIC16F630 however the firmware is proprietary to velleman.

Nocrotec Nixie Clocks

This company has a range of kits using nixie tubes and numitrons (low voltage incadescent displays in tubes). One particularly lovely kit is their IN-8 Blue Dream kit:


The blue glow at the base of the nixie tubes is due to an LED mounted at the bottom of the tube. Another aesthetically-pleasing kit is their Little Blue Something nixie clock. Check out their demonstration video:


More IN-12 nixie clocks from Germany, the first being the Manuela_HR. You can buy the kit without an enclosure, or choose from the ‘office’ style:

… or this funky number:

You can specify it with RGB LEDs which colour-cycle to provide the effect shown above. For those not too keen you can also buy the kits pre-assembled. Their other kit is the Sven:


It is available with IN-8 or IN-14 nixie tubes. The design quality of the enclosure is outstanding, a lot of effort has been made to produce a complete kit that “won’t look like a kit” when completed.

Minty Time

This is a small binary clock kit that fits in an Altoids tin:

This is a nice little kit as it is inexpensive, easy to make and very well documented. You could also mount this in a variety of flat surfaces, limited only by your imagination.

The Chronulator

Here we find a unique design that uses analogue panel meters in a similar method to the multimeter clock detailed previously. Here is an example of the completed kit:


The kit contains the electronics and meters (or you can delete the meters for a discount if you already have some) however the housing is up to you. Furthermore, this kit has some of the best instructions (.pdf) I have ever seen. They are a credit to the organisation. Our final clock kit is the …


This is another clock kit in the style of ‘suspicious bomb timer’-looking – and it pulls this off quite well. Consider the following video demonstration:

As well as a normal clock it can function as an alarm, stopwatch, countdown timer and lap counter. The instructions (.pdf) are well written and easy to follow. Furthermore the Denkimono is also well priced for the kit and delivery.

Hopefully this catalogue of clock kits was of interest to you. If you have found some other kits to add to the list, or wish to disagree or generally comment about this article please do so via the comment section below. This article was not sponsored in any way.

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in clocks, kit review, nixie, review, TTL, VFDComments (8)

Tutorial: Arduino and the SPI bus part II

This is chapter thirty-six of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – A seemingly endless series of articles on the Arduino universe. The first chapter is here, the complete series is detailed here

[Updated 10/01/2013]

This is the second of several chapters in which we are investigating the SPI data bus, and how we can control devices using it with our Arduino systems. If you have not done so already, please read part one of the SPI articles. Again we will learn the necessary theory, and then apply it by controlling a variety of devices. As always things will be kept as simple as possible.

First on our list today is the use of multiple SPI devices on the single bus. We briefly touched on this in part one, by showing how multiple devices are wired, for example:

Notice how the slave devices share the clock, MOSI and MISO lines – however they both have their own chip select line back to the master device. At this point a limitation of the SPI bus becomes prevalent – for each slave device we need another digital pin to control chip select for that device. If you were looking to control many devices, it would be better to consider finding I2C solutions to the problem. To implement multiple devices is very easy. Consider the example 34.1 from part one – we controlled a digital rheostat. Now we will repeat the example, but instead control four instead of one. For reference, here is the pinout diagram:

Doing so may sound complex, but it is not. We connect the SCK, MOSI and  MISO pins together, then to Arduino pins D13, D11, D12 respectively. Each CS pin is wired to a separate Arduino digital pin. In our example rheostats 1 to 4 connect to D10 through to D7 respectively. To show the resistance is changing on each rheostat, there is an LED between pin 5 and GND and a 470 ohm resistor between 5V and pin 6. Next, here is the sketch:

Although the example sketch may be longer than necessary, it is quite simple. We have four SPI devices each controlling one LED, so to keep things easy to track we have defined led1~led4 to match the chip select digital out pins used for each SPI device. Then see the first four lines in void setup(); these pins are set to output in order to function as required. Next – this is very important – we set the pins’ state to HIGH. You must do this to every chip select line! Otherwise more than one CS pins may be initially low in some instances and cause the first data sent from MOSI to travel along to two or more SPI devices. With LEDs this may not be an issue, but for motor controllers … well it could be.

The other point of interest is the function

We pass the value for the SPI device we want to control, and the value to send to the device. The value for l is the chip select value for the SPI device to control, and ranges from 10~7 – or as defined earlier, led1~4. The rest of the sketch is involved in controlling the LED’s brightness by varying the resistance of the rheostats. Now to see example 36.1 in action via the following video clip:

(If you are wondering what I have done to the Freetronics board in that video, it was to add a DS1307 real-time clock IC in the prototyping section).

Next on the agenda is a digital-to-analogue converter, to be referred to using the acronym DAC. What is a DAC? In simple terms, it accepts a numerical value between zero and a maximum value (digital) and outputs a voltage between the range of zero and a maximum relative to the input value (analogue). One could consider this to be the opposite of the what we use the function analogRead(); for. For our example we will use a Microchip MCP4921 (data sheet.pdf):

(Please note that this is a beginners’ tutorial and is somewhat simplified). This DAC has a 12-bit resolution. This means that it can accept a decimal number between 0 and 4095 – in binary this is 0 to 1111 1111 1111 (see why it is called 12-bit) – and the outpout voltage is divided into 4096 steps. The output voltage for this particular DAC can fall between 0 and just under the supply voltage (5V). So for each increase of 1 in the decimal input value, the DAC will output around 1.221 millivolts.

It is also possible to reduce the size of the voltage output steps by using a lower reference voltage. Then the DAC will consider the reference voltage to be the maximum output with a value of 4095. So (for example) if the reference voltage was 2.5V, each increase of 1 in the decimal input value, the DAC will output around 0.6105 millivolts. The minimum reference voltage possible is 0.8V, which offers a step of 200 microvolts (uV).

The output of a DAC can be used for many things, such as a function generator or the playback of audio recorded in a digital form. For now we will examine how to use the hardware, and monitoring output on an oscilloscope. First we need the pinouts:

By now these sorts of diagrams shouldn’t present any problems. In this example, we keep pin 5 permanently set to GND; pin 6 is where you feed in the reference voltage – we will set this to +5V; AVss is GND; and Vouta is the output signal pin – where the magic comes from 🙂 The next thing to investigate is the MCP4921’s write command register:

Bits 0 to 11 are the 12 bits of the output value; bit 15 is an output selector (unused on the MPC4921); bit 14 controls the input buffer; bit 13 controls an inbuilt output amplifier; and bit 12 can shutdown the DAC. Unlike previous devices, the input data is spread across two bytes (or a word of data). Therefore a small amount of work needs to be done to format the data ready for the DAC. Let’s explain this through looking at the sketch for example 36.2 that follows. The purpose of the sketch is to go through all possible DAC values, from 0 to 4095, then back to 0 and so on.

First. note the variable outputvalue – it is a word, a 16-bit unsigned variable. This is perfect as we will be sending a word of data to the DAC. We put the increasing/decreasing value for a into outputValue. However as we can only send bytes of data at a time down the SPI bus, we will use the function highbyte() to separate the high side of the word (bits 15~8) into a byte variable called data.

We then use the bitwise AND and OR operators to set the parameter bits 15~12. Then this byte is sent to the SPI bus. Finally, the function lowbyte() is used to send the low side of the word (bits 7~0) into data and thence down the SPI bus as well.

Now for our demonstration sketch:

And a quick look at the DAC in action via an oscilloscope:

By now we have covered in detail how to send data to a device on the SPI bus. But how do we receive data from a device?

Doing so is quite simple, but some information is required about the particular device. For the rest of this chapter, we will use the Maxim DS3234 “extremely accurate” real-time clock. Please download the data sheet (.pdf) now, as it will be referred to many times.

The DS3234 is not available in through-hole packaging, so we will be using one that comes pre-soldered onto a very convenient breakout board:

It only takes a few moments to solder in some header pins for breadboard use. The battery type is CR1220 (12 x 2.0mm, 3V); if you don’t have a battery you will need to short out the battery holder with some wire otherwise the IC will not work. Readers have reported that the IC doesn’t keep time if the USB and external power are both applied to the Arduino at the same time.

A device will have one or more registers where information is read from and written to. Look at page twelve of the DS3234 data sheet, there are twenty-three registers, each containing eight bits (one byte) of data. Please take note that each register has a read and write address. An example – to retrieve the contents of the register at location 08h (alarm minutes) and place it into the byte data we need to do the following:

Don’t forget to take note of  the function SPI.setBitOrder(MSBFIRST); in your sketch, as this also determines the bit order of the data coming from the device. To write data to a specific address is also quite simple, for example:

Up to this point, we have not concerned ourselves with what is called the SPI data mode. The mode determines how the SPI device interprets the ‘pulses’ of data going in and out of the device. For a well-defined explanation, please read this article. With some devices (and in our forthcoming example) the data mode needs to be defined. So we use:

to set the data mode, within void(setup);. To determine a device’s data mode, as always – consult the data sheet. With our DS3234 example, the mode is mentioned on page 1 under Features List.

Finally, let’s delve a little deeper into SPI via the DS3234. The interesting people at Sparkfun have already written a good demonstration sketch for the DS3234, so let’s have a look at that and deconstruct it a little to see what is going on. You can download the sketch below from here, then change the file extension from .c to .pde.

Don’t let the use of custom functions and loops put you off, they are there to save time. Looking in the function SetTimeDate();, you can see that the data is written to the registers 80h through to 86h (skipping 83h – day of week) in the way as described earlier (set CS low, send out address to write to, send out data, set CS high). You will also notice some bitwise arithmetic going on as well. This is done to convert data between binary-coded decimal and decimal numbers.

Why? Go back to page twelve of the DS3234 data sheet and look at (e.g.) register 00h/80h – seconds. The bits 7~4 are used to represent the ‘tens’ column of the value, and bits 3~0 represent the ‘ones’ column of the value. So some bit shifting is necessary to isolate the digit for each column in order to convert the data to decimal. For other ways to convert between BCD and decimal, see the examples using the Maxim DS1307 in chapter seven.

Finally here is another example of reading the time data from the DS3234:

So there you have it – more about the world of the SPI bus and how to control the devices within.


In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, BOB-10160, dac, DS3234, education, learning electronics, lesson, MCP4162, MCP4921, microcontrollers, SPI, tutorial, UncategorizedComments (14)

Tutorial: Using analog input for multiple buttons

Use multiple buttons with one analog input in chapter twenty-five of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – A tutorial on the Arduino universe.

[Updated 14/03/2013]

The purpose of this article is demonstrate how you can read many push buttons (used for user-input) using only one analog input pin. This will allow you to save digital I/O pins for other uses such as LCD modules and so on. Hopefully you recall how we used analogRead() in chapter one, and how we used a potentiometer to control menu options in exercise 10.1. For this article, we will be looking at reading individual presses, not simultaneous (i.e. detecting multiple button presses).

To recap, an analog input pin is connected to an analog to digital (ADC) converter in our Arduino’s microcontroller. It has a ten bit resolution, and can return a numerical value between 0 and 1023 which relates to an analog voltage being read of between 0 and 5 volts DC. With the following sketch:

and in the following short video, we have demonstrated the possible values returned by measuring the voltage from the centre pin of a 10k ohm potentiometer, which is connected between 5V and GND:

As the potentiometer’s resistance decreases, the value returned by analogRead() increases. Therefore at certain resistance values, analogRead() will return certain numerical values. So, if we created a circuit with (for example) five buttons that allowed various voltages to be read by an analog pin, each voltage read would cause analogRead() to return a particular value. And thus we can read the status of a number of buttons using one analog pin. The following circuit is an example of using five buttons on one analog input, using the sketch from example 25.1:


And here it is in action:

Where is the current coming from? Using pinMode(A5, INPUT_PULLUP); turns on the internal pull-up resistor in the microcontroller, which gives us ~4.8V to use. Some of you may have notice that when the right-most button is pressed, there is a direct short between A5 and GND. When that button is depressed, the current flow is less than one milliamp due to the pull-up resistor protecting us from a short circuit. Also note that you don’t have to use A5, any analog pin is fine.

As shown in the previous video clip, the values returned by analogRead() were:

  • 1023 for nothing pressed (default state)
  • 454 for button one
  • 382 for button two
  • 291 for button three
  • 168 for button four
  • 0 for button five

So for our sketches to react to the various button presses, they need to make decisions based on the value returned by analogRead(). Keeping all the resistors at the same value gives us a pretty fair spread between values, however the values can change slightly due to the tolerance of resistors and parasitic resistance in the circuit.

So after making a prototype circuit, you should determine the values for each button, and then have your sketch look at a range of values when reading the analog pin. Doing so becomes more important if you are producing more than one of your project, as resistors of the same value from the same batch can still vary slightly. Using the circuit from example 25.2, we will use a function to read the buttons and return the button number for the sketch to act upon:

And now our video demonstration:

So now you have a useful method for receiving input via buttons without wasting many digital input pins. I hope you found this article useful or at least interesting.


Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in analog, arduino, learning electronics, lesson, microcontrollers, multiple buttons, tutorialComments (9)

Kit review – Sparkfun Function Generator

Hello readers

[10/09/2011 Update – It would seem that this kit has been discontinued – most likely due to the unavailability of the XR2206 function generator IC – which is a damn shame as it was a great kit. If you are ‘feeling lucky’ eBay seems to have a flood of them. Purchase at your own risk!]

Time for another kit review (anything to take the heat off from the kid-e-log!). Today we will examine the Sparkfun Function Generator kit. This is based from an original design by Nuxie and has now been given a nice thick red PCB and layout redesign. Although quite a bare-bones kit, it can provide us with the following functions:

  • sine waves
  • triangle waves
  • a 5V square wave with adjustable frequency

There are two frequency ranges to choose from, either 15~4544Hz or 4.1~659.87kHz. Your experience may vary, as these values will vary depending on the individual tolerance of your components.  The coarse and fine adjustment potentiometers do a reasonable job of adjustment, however if you were really specific perhaps a multi-turn pot could be used for the fine adjustment. With the use of a frequency counter one could calibrate this quite well.

The maximum amplitude of the sine and triangle waves is 12V peak to peak, and doing so requires a DC power supply of between 14~22 volts (it could be higher, up to 30 volts – however the included capacitors are only rated for 25V). However if you just need the 5V square-wave, or a lower amplitude, a lesser supply voltage such as 9 volts can be substituted. After running the generator from a 20V supply, the 7812 regulator started to become quite warm – a heatsink would be required for extended use. The main brains of the generator are held by the Exar XR2206 monolithic function generator IC – please see the detailed data sheet for more information.

Now what do you get? Not much, just the bare minimum once more. Everything you need and nothing you don’t …


Upon turfing out the parts we are presented with:


Not a bad bill of materials – nice to see a DC socket for use with a plug-pack. Considering the XR2206 is somewhat expensive and rare here in the relative antipodes, an IC socket would be nice – however I have learned to just shut up and keep my own range in stock now instead of complaining. Having 5% tolerance resistors took me as a surprise at first, but considering that the kit is not really laboratory-precision equipment the tolerance should be fine. One could always measure the output and make a panel up later on.

Once again, I am impressed with the PCB from Sparkfun. Thick, heavy, a good solder mask and descriptive silk-screen:


Which is necessary as there aren’t any instructions with the kit nor much on the Sparkfun website. The original Nuxie site does have a bit of a walk through if you like to read about things before making them. Finally, some resistors and capacitors included are so small, a decent multimeter will be necessary to read them (or at least a good magnifying glass!).

Construction was very simple, starting with the low-profile components such as resistors and capacitors:


followed by the switches, terminal blocks, IC sockets and the ICs:


and finally the potentiometers:


The easiest way to solder in the pots while keeping them in line was to turn the board upside down, resting on the pots. They balance nicely and allow a quick and easy soldering job. At this point the function generator is now ready to go – after the addition of some spacers to elevate it from the bench when in use:


Now for the obligatory demonstration video. Once again, the CRO is not in the best condition, but I hope you get the idea…

Although a very simple, barebones-style of kit (in a similar method to the JYETech Capacitance meter) this function generator will quickly knock out some functions in a hurry and at a decent price. A good kit for those who are learning to solder, perhaps a great next step from a TV-B-Gone or Simon kit. And for the more advanced among us, this kit is licensed under Creative Commons attribution+share-alike, and the full Eagle design files are available for download – so perhaps make your own? High resolution images are available on flickr.

[Note – The kit was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

 In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in education, kit review, KIT-10015, learning electronics, oscilloscope, test equipment, XR2206Comments (0)

Tutorial: Arduino and the AREF pin

Learn about the Arduino’s AREF pin and how to use it in this detailed tutorial.

[Updated 09/01/2013]

Today we are going to spend some time with the AREF pin – what it is, how it works and why you may want to use it. First of all, here it is on our boards:

[Please read the entire article before working with your hardware]

In chapter one of this series we used the analogRead() function to measure a voltage that fell between zero and five volts DC. In doing so, we used one of the six analog input pins. Each of these are connected to ADC (analog to digital conversion) pins in the Arduino’s microcontroller. And the analogRead() function returned a value that fell between 0 and 1023, relative to the input voltage.

But why is the result a value between 0~1023? This is due to the resolution of the ADC. The resolution (for this article) is the degree to which something can be represented numerically. The higher the resolution, the greater accuracy with which something can be represented. We call the 5V our reference voltage.

We measure resolution in the terms of the number of bits of resolution. For example, a 1-bit resolution would only allow two (two to the power of one) values – zero and one. A 2-bit resolution would allow four (two to the power of two) values – zero, one, two and three. If we tried to measure  a five volt range with a two-bit resolution, and the measured voltage was four volts, our ADC would return a value of 3 – as four volts falls between 3.75 and 5V. It is easier to imagine this with the following image:


So with our example ADC with 2-bit resolution, it can only represent the voltage with four possible resulting values. If the input voltage falls between 0 and 1.25, the ADC returns 0; if the voltage falls between 1.25 and 2.5, the ADC returns a value of 1. And so on.

With our Arduino’s ADC range of 0~1023 – we have 1024 possible values – or 2 to the power of 10. So our Arduinos have an ADC with a 10-bit resolution. Not too shabby at all. If you divide 5 (volts) by 1024, the quotient is 0.00488 – so each step of the ADC represents 4.88 millivolts.

However – not all Arduino boards are created equally. Your default reference voltage of 5V is for Arduino Duemilanoves, Unos, Megas, Freetronics Elevens and others that have an MCU that is designed to run from 5V. If your Arduino board is designed for 3.3V, such as an Arduino Pro Mini-3.3 – your default reference voltage is 3.3V. So as always, check your board’s data sheet.

Note – if you’re powering your 5V board from USB, the default reference voltage will be a little less – check with a multimeter by measuring the potential across the 5V pin and GND. Then use the reading as your reference voltage.

What if we want to measure voltages between 0 and 2, or 0 and 4.6? How would the ADC know what is 100% of our voltage range?

And therein lies the reason for the AREF pin! AREF means Analogue REFerence. It allows us to feed the Arduino a reference voltage from an external power supply. For example, if we want to measure voltages with a maximum range of 3.3V, we would feed a nice smooth 3.3V into the AREF pin – perhaps from a voltage regulator IC. Then the each step of the ADC would represent 3.22 millivolts.

Interestingly enough, our Arduino boards already have some internal reference voltages to make use of. Boards with an ATmega328 microcontroller also have a 1.1V internal reference voltage. If you have a Mega (!), you also have available reference voltages of 1.1 and 2.56V. At the time of writing the lowest workable reference voltage would be 1.1V.

So how do we tell our Arduinos to use AREF? Simple. Use the function analogReference(type); in the following ways:

For Duemilanove and compatibles with ATmega328 microcontrollers:

  • analogReference(INTERNAL); – selects the internal 1.1V reference voltage
  • analogReference(EXTERNAL); – selects the voltage on the AREF pin (that must be between zero and five volts DC)
  • And to return to the internal 5V reference voltage – use analogReference(DEFAULT);

If you have a Mega:

  • analogReference(INTERNAL1V1); – selects the internal 1.1V reference voltage
  • analogReference(INTERNAL2V56); – selects the internal 2.56V reference voltage
  • analogReference(EXTERNAL); – selects the voltage on the AREF pin (that must be between zero and five volts DC)
  • And to return to the internal 5V reference voltage – use analogReference(DEFAULT)

Note you must call analogReference() before using analogRead(); otherwise you will short the internal reference voltage to the AREF pin – possibly damaging your board. If unsure about your particular board, ask the supplier or perhaps in our Google Group.

Now that we understand the Arduino functions, let’s look at some ways to make a reference voltage. The most inexpensive method would be using resistors as a voltage divider. For example, to halve a voltage, use two identical resistors as such:

For a thorough explanation on dividing voltage with resistors, please read this article. Try and use resistors with a low tolerance, such as 1%, otherwise your reference voltage may not be accurate enough. However this method is very cheap.

A more accurate method of generating a reference voltage is with a zener diode. Zener diodes are available in various breakdown voltages, and can be used very easily. Here is an example of using a 3.6V zener diode to generate a 3.6V reference voltage:

For more information about zener (and other diodes) please read this article. Finally, you could also use a linear voltage regulator as mentioned earlier. Physically this would be the easiest and most accurate solution, however regulators are not available in such a wide range nor work with such low voltages (i.e. below 5V).

Finally, when developing your sketch with your new AREF voltage for analogRead();, don’t forget to take into account the mathematics of the operation. For example, if you have a reference voltage of 5V, divide it by 1024 to arrive at a value of 4.88 millivolts per analogRead() unit. Or as in the following example, if you have a reference voltage of 1.8V, dividing it by 1024 gives you 1.75 millivolts per analogRead() unit:

So if necessary, you can now reduce your voltage range for analog inputs and measure them effectively.


Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, aref, education, lesson, microcontrollers, tutorialComments (44)

Review – Starman Electric Databridge Wireless I/O Modules

In this review we are going to have a look at some new wireless data modules that have just arrived on the market. They are the Databridge Wireless I/O modules from Starman Electric. Although there are many types of wireless modules out there, such as the discount 315 MHz units that are somewhat unreliable (well for me); and the great XBee series (as we used in Moving Forward with Arduino – Chapter Fourteen) – these Starman modules take it to the next level. How?

The concept of a databridge is a delightfully simple one. The two modules take the place of a wire. Digital, analogue, UART, even PC serial. No firmware settings to adjust, just plug them in and they work!

First of all, there are two physical types of unit, either DIP mount or SMD. The units below are the DIP version, 1mW output power:


The graph paper is 5mm square, and the module measures 53.85mm by 25.91mm. The DIP packaging (above) is meant for experimenters and prototypes, you can order SMD versions for production runs. There are also two power-output versions, 1mW with a theoretical range of 1km, and a 100 mW with a range of 4km. The higher power modules require the use of an external antenna. They require 3.3 volts DC, with a peak current draw of 37mA for the 1mW, and 120mA for the 100mW. For demonstration purposes I am using a Texas Instruments LP2950 to provide 3.3 volts DC at up to 100 mA.

Although the specification sheet is quite long (and you can download it from here) there are a few features that really stand out, including:

  • Automatic connection – a pair of modules will ‘lock’ onto each other without any extra work by the user;
  • A very high sampling rate of 200 samples per second with a latency of five millisconds;
  • Spread-spectrum radio operation – the modules will skip frequencies themselves for reliable connections;
  • You can have sixteen unique pairs working in the same area without cross-interference;
  • You can have two analogue channels and multiple digital channels simultaneously.

But enough talking, time to put them to the test. I will recreate some examples found in the Getting Started manual available for download here.

As I only have one pair of modules, and somehow I think my neighbours won’t be using any at this point in time, there is no need to set the pair’s unique network ID. However you do need to specify the master and slave in the module relationship (no switches…), which is done with pin 4 – to Vcc for master, and pin 4 to GND for slave. Now on with the show!

The first example of interest is number two in the guide – the wireless digital and analogue I/O bridge. To me this seems like an interesting wireless “repeater” to some Arduino analogue and digital outputs. Here is my test schematic used for the demonstrations in this review:


and my usual messy breadboards:

Well this is a temporary test! The slave module board is running from a 9V PP3 battery so I can take it for a walk.

Anyhow, the setup is – four digital out lines from an Arduino, which are either high or low (+5v or GND). These are connected to pins ‘digital signal’ 1~4 on the master Databridge. Furthermore, Arduino analogue pin 1 went to the Databridge ‘analog signal’ pin 1. At the slave side of things, there are four LEDs with current limiting resistors connected to pins ‘digital signal’ 1~4; and two wires each from ‘analog signal’ 1 would be connected to a voltmeter. The digital output pins on slave modules default to ‘high’ unless driven otherwise.

Finally, there is also an LED and current limiting resistor coming from pin 32 of each unit – the ‘link’ pin. The link pin is a lifesaver. Here is a great feature – when the pair of units are within range of each other and matched as a pair, link goes high (3.3V). Out of range? It goes low (0V). Therefore you can test the range on these modules just by powering them up on a breadboard each, with the LEDs on pin 32, and go for a walk with a unit. When the LED is off – you’re out of range. And when you come back into range, the modules reconnect automatically.

Back to the test. First I just created a loop which turned the digital pins on and off, and the matching LEDs on the slave unit blinked on and off as expected. No extra code, no trying to create wacky functions to multiplex/demultiplex signals – this just works. The modules are like an invisible bunch of wires between two points. Never has anything wireless worked so easily for me.

Here is a quick video clip, first notice the lonely LEDs on each breadboard – the are the link LEDs. When I power cycle the master or slave, notice how quickly they reconnect. Please note that the slave unit retains the state of the digital outputs if connection is lost. So if a pin is high while connected – if the module loses radio contact, the pin will stay high.

The theoretical maximum working range is quoted as 1km for these 1mW modules. My indoor test allowed a distance of 11 metres, with three concrete walls of a thickness of ~110mm in between. Unfortunately living in my area I could not find a flat, open area large enough to test the maximum open-air range – however considering the indoor ‘concrete wall’ test and my experience with other wireless equipment of this power output, it would be accurate in an outdoor, line-of-sight application. As always, conduct your own real-life tests before making any project commitments  and so on.

And as always, I was curious about the current draw of the units while in use. The master module with the link LED on measured 53 milliamps, with the slave at the boundary of the radio range:


The current use only dropped around 2 or 3 milliamps when the slave was next to the master. The slave module used 59 milliamps with the link LED on:


Therefore taking the LED current draw into consideration, the power usage of these modules is quite low considering the level of communication between them and the high sampling rate.

The next test was to see how the analogue data lines performed. According to example four in the Getting Started guide, the modules will reproduce an input of between 0 and 2.4 volts DC. So I have placed an 11k ohm resistor in series with a 10k ohm potentiometer with analog input 1, and measured the resulting output from the slave. Notice how I still have the digital data lines in use while using the analogue line.  Here is a short clip of this in action:

Amazing – a multitasking wireless module. Note that you could always use an op-amp to boost the output voltage back to the 0~5V DC range, an example of this is on page nine of the Getting Started guide.

Those above were but two from the many possibilities available when using these units:

  • wireless serial data links
  • remote on/off control of six items
  • robotics remote control
  • microcontroller I/O wireless extension…

Frankly – if you need to wirelessly connect more than one data line simultaneously, you have an excellent solution with the Databridge modules.

Update! – Radio licensing information:

These modules operate in the 2.4 GHz ISM (industrial, scientific and medical) band. For those in the USA, the Databridge is an FCC-approved “class B” device, and is only for use by OEM integrators (see page 16 of the datasheet.pdf). Starman Electric also state that the Databridge is certified for Canada and the EU (ETSI).

For those here in Australia, these units are operated under the conditions of the Radiocommunications (Low Interference Potential Devices) Class Licence 2000, and I feel are classed as “spread spectrum unit” under the preceding license.

Please conduct your own research with regards to radio transmitter licensing in your area. Furthermore, please read the tronixstuff “boring stuff” here.

But enough about that, where you can get them?

Australian customers can purchase these modules from our local distributor – Interworld Electronics; North Americans and the rest of the world directly via Starman Electric.

Remember, if you have any questions about these modules please contact Starman Electric via their website.

[Note – these wireless modules were loan units received from Starman Electric for review purposes]

Posted in databridge, part review, starman, wirelessComments (7)

Getting Started with Arduino! – Chapter Eight

This is part of a series titled “Getting Started with Arduino!” by John Boxall – A tutorial on the Arduino microcontrollers. The first chapter is here, the complete index is here.

In this chapter we will continue to examine the features of the DS1307 real time clock, receive user input in a new way, use that input to control some physical movement, then build a strange analogue clock. So let’s go!

Recall from chapter seven, that the DS1307 is also has an inbuilt square wave generator, which can operate at a frequency of 1Hz. This is an ideal driver for a “seconds” indicator LED. To activate this you only need to send the hexidecimal value 0x10 after setting the date and time parameters when setting the time. Note this in line 70 of the solution for exercise 7.1. This also means you can create 1Hz pulses for timing purposes, an over-engineered blinking LED, or even an old-school countdown timer in conjunction with some CMOS 4017 ICs.

For now, let’s add a “seconds” LED to our clock from Exercise 7.1. The hardware is very simple, just connect a 560 ohm resistor to pin 7 of our DS1307, thence to a normal LED of your choice, thence to ground. Here is the result:

Not that exciting, but it is nice to have a bit more “blinkiness”.

Finally, there is also a need to work with 12-hour time. From the DS1307 data sheet we can see that it can be programmed to operate in this way, however it is easier to just work in 24-hour time, then use mathematics to convert the display to 12-hour time if necessary. The only hardware modification required is the addition of an LED (for example) to indicate whether it is AM or PM. In my example the LED indicates that it is AM.

Exercise 8.1

So now that is your task, convert the results of exercise 7.1 to display 12-hour time, using an LED to indicate AM or PM (or two LEDs, etc…)

Here is my result in video form:

and the sketch.

OK then, that’s enough about time for a while. Let’s learn about another way of accepting user input…

Your computer!

Previously we have used functions like Serial.print() to display data on the serial monitor box in the Arduino IDE. However, we can also use the serial monitor box to give our sketch data. At first this may seem rather pointless, as you would not use an Arduino just to do some maths for you, etc. However – if you are controlling some physical hardware, you now have a very simple way to feed it values, control movements, and so on. So let’s see how this works.

The first thing to know is that the serial input has one of two sources, either the USB port (so we can use the serial monitor in the Arduino IDE) or the serial in/out pins on our Arduino board. These are digital pins 0 and 1. You cannot use these pins for non-serial I/O functions in the same sketch. If you are using an Arduino Mega the pins are different, please see here.  For this chapter, we will use the USB port for our demonstrations.

Next, data is accepted in bytes (remember – 8 bits make a byte!). This is good, as a character (e.g. the letter A) is one byte. Our serial  input has a receiving buffer of 128 bytes. This means a project can receive up to 128 bytes whilst executing a portion of a sketch that does not wait for input. Then when the sketch is ready, it can allow the data to serially flow in from the buffer. You can also flush out the buffer, ready for more input. Just like a … well let’s keep it clean.

Ok, let’s have a look. Here is a sketch that accepts user input from your computer keyboard via the serial monitor box. So once you upload the sketch, open the serial monitor box and type something, then press return or enter. Enter and upload this sketch:


Here is a quick video clip of it in operation:

So now we can have something we already know displayed in front of us. Not so useful. However, what would be useful is converting the keyboard input into values that our Arduino can work with.

Consider this example. It accepts a single integer from the input of serial monitor box, converts it to a number you can use mathematically, and performs an operation on that number. Here is a shot of it in action:


If you are unsure about how it works, follow the sketch using a pen and paper, that is write down a sample number for input, then run through the sketch manually, doing the computations yourself. I often find doing so is a good way of deciphering a complex sketch. Once you have completed that, it is time for…

Exercise 8.2

Create a sketch that accept an angle between 0 and 180, and a time in seconds between 0 and (say) 60. Then it will rotate a servo to that angle and hold it there for the duration, then return it to 0 degrees. For a refresher on servo operation, visit chapter three before you start.

Here is a video clip of my interpretation at work:

So now you have the ability to generate user input with a normal keyboard and a PC. In the future we will examine doing so without the need for a personal computer…

Finally, let’s have some fun by combining two projects from the past into one new exercise.

Exercise 8.3

Create an analogue clock using two servos, in a similar method to our analogue thermometer from chapter three. The user will set the time (hours and minutes) using the serial monitor box.

Here is a photo of my example. I spared no expense on this one…


Here is a video demonstration. First we see the clock being set to 12:59, then the hands moving into position, finally the transition from 12:59 to 1:00.

If you had more servos and some earplugs, a giant day/date/clock display could be made… Nevertheless, we have had another hopefully interesting and educational lecture. Or at least had a laugh. Now onto chapter nine.


Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, education, LCD, lesson, microcontrollers, serial monitor, servo, tutorialComments (17)

Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: