Tag Archive | "australia"

Experimenting with Arduino and IKEA DIODER LED Strips

Introduction

A few weeks ago I found a DIODER LED strip set from a long-ago trek to IKEA, and considered that something could be done with it.  So in this article you can see how easy it is to control the LEDs using an Arduino or compatible board with ease… opening it up to all sorts of possibilities.

This is not the most original project – however things have been pretty quiet around here, so I thought it was time to share something new with you. Furthermore the DIODER control PCB has changed, so this will be relevant to new purchases. Nevertheless, let’s get on with it.

So what is DIODER anyhow? 

As you can see in the image below, the DIODER pack includes four RGB LED units each with nine RGB LEDs per unit. A controller box allows power and colour choice, a distribution box connects between the controller box and the LED strips, and the whole thing is powered by a 12V DC plugpack:

IKEA DIODER LED strips

The following is a quick video showing the DIODER in action as devised by IKEA:

 

Thankfully the plugpack keeps us away from mains voltages, and includes a long detachable cable which connects to the LED strip distribution box. The first thought was to investigate the controller, and you can open it with a standard screwdriver. Carefully pry away the long-side, as two clips on each side hold it together…

IKEA DIODER Arduino tronixstuff
… which reveals the PCB. Nothing too exciting here – you can see the potentiometer used for changing the lighting effects, power and range buttons and so on:

ikea dioder tronixstuff arduino

Our DIODER has the updated PCB with the Chinese market microcontroller. If you have an older DIODER with a Microchip PIC – you can reprogram it yourself.

ikea dioder arduino tronixstuff

The following three MOSFETs are used to control the current to each of the red, green and blue LED circuits. These will be the key to controlling the DIODER’s strips – but are way too small for me to solder to. The original plan was to have an Arduino’s PWM outputs tap into the MOSFET’s gates – but instead I will use external MOSFETs.

ikea dioder arduino tronixstuff

So what’s a MOSFET?

In the past you may have used a transistor to switch higher current from an Arduino, however a MOSFET is a better solution for this function. The can control large voltages and high currents without any effort. We will use N-channel MOSFETs, which have three pins – Source, Drain and Gate. When the Gate is HIGH, current will flow into the Drain and out of the Source:

mosfet

A simplistic explanation is that it can be used like a button – and when wiring your own N-MOSFET a 10k resistor should be used between Gate and Drain to keep the Gate low when the Arduino output is set to LOW (just like de-bouncing a button). To learn more about MOSFETS – get yourself a copy of “The Art of Electronics“. It is worth every cent.

However being somewhat time poor (lazy?), I have instead used a Freetronics NDrive Shield for Arduino – which contains six N-MOSFETs all on one convenient shield  – with each MOSFET’s Gate pin connected to an Arduino PWM output.
freetronics ndrive shield tronixlabs

So let’s head back to the LED strips for a moment, in order to determine how the LEDs are wired in the strip. Thanks to the manufacturer – the PCB has the markings as shown below:

ikea dioder tronixstuff arduino

They’re 12V LEDs in a common-anode configuration. How much current do they draw? Depends on how many strips you have connected together…

ikea dioder arduino tronixstuff

For the curious I measured each colour at each length, with the results in the following table:

current

So all four strips turned on, with all colours on – the strips will draw around 165 mA of current at 12V. Those blue LEDs are certainly thirsty.

Moving on, the next step is to connect the strips to the MOSFET shield. This is easy thanks to the cable included in the DIODER pack, just chop the white connector off as shown below:

ikea dioder arduino tronixstuff

By connecting an LED strip to the other end of the cable you can then determine which wire is common, and which are the cathodes for red, green and blue.

The plugpack included with the DIODER pack can be used to power the entire project, so you will need cut the DC plug (the plug that connects into the DIODER’s distribution box) off the lead, and use a multimeter to determine which wire is negative, and which is positive.

Connect the negative wire to the GND terminal on the shield, and the positive wire to the Vin terminal.  Then…

  • the red LED wire to the D3 terminal,
  • the green LED wire to the D9 terminal,
  • and the blue LED wire to the D10 terminal.

Finally, connect the 12V LED wire (anode) into the Vin terminal. Now double-check your wiring. Then check it again.

ikea dioder tronixstuff arduino

Testing

Now to run a test sketch to show the LED strip can easily be controlled. We’ll turn each colour on and off using PWM (Pulse-Width Modulation) – a neat way to control the brightness of each colour. The following sketch will pulse each colour in turn, and there’s also a blink function you can use.

Success. And for the non-believers, watch the following video:

Better LED control

As always, there’s a better way of doing things and one example of LED control is the awesome FASTLED library by Daniel Garcia and others. Go and download it now – https://github.com/FastLED/FastLED. Apart from our simple LEDS, the FASTLED library is also great with WS2812B/Adafruit NeoPixels and others.

One excellent demonstration included with the library is the AnalogOutput sketch, which I have supplied below to work with our example hardware:

You can see this in action through the following video:

Control using a mobile phone?

Yes – click here to learn how.

Conclusion

So if you have some IKEA LED strips, or anything else that requires more current than an Arduino’s output pin can offer – you can use MOSFETs to take over the current control and have fun. And finally a plug for my own store – tronixlabs.com – offering a growing range and Australia’s best value for supported hobbyist electronics from adafruit, DFRobot, Freetronics, Seeed Studio and much much more.

visit tronixlabs.com

As always, have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website.

Posted in arduino, freetronics, Ikea, MOSFET, tronixlabs, tronixstuff, tutorialComments (3)

Kit review – Altronics Logic Probe Mk II

Introduction

Every month Australian electronics magazine Silicon Chip publishes a few projects, and in this kit review we’ll look at an older but still current example from August 2004 – the 3-state Logic Probe Kit (Mk II). This is an inexpensive piece of test equipment that’s useful when checking digital logic states and as a kit, great for beginners. Avid readers of my kit reviews may remember the SMD version we examined in June… well it wasn’t that much of a success due to the size of the parts. However this through-hole version has been quite successful, so keep reading to find out more

Assembly

The kit is packaged in typical form, without any surprises:

bag

 In typical Altronics fashion, an updated assembly guide is provided along with a general reference to common electronics topics:

bagcontents

 All the required parts are included – except for a 14-pin IC socket and two CR2016 batteries.

parts

 The PCB makes soldering easy with the silk-screen and solder mask:

pcbtop

 However the resistor numbering is a bit out of whack, a few R-numbers are skipped. So before soldering, measure and line up all the resistors in numbered order – doing so will reduce the chance of fitting them in the wrong spot.

pcbbottom

When it comes time to solder the power switch on the end, it’s necessary to clip off two tabs – one at each end of the switch. However this isn’t a problem:

solderswitchon

Soldering in the rest of the components wasn’t any effort at all, they’ve been spaced around the PCB nicely:

gettingthere

 Once they’re in, it’s time to insert the pins that hold the probe (shown on the left below):

pinsforprobe

 A full-sized probe is included with the kit, which you cut down with a hacksaw to allow it to fit on the end of the PCB. Then solder a short wire from the tip’s collar and run it through the body as such:

pinsforprobe2

 At this point, it’s time to break out the butane torch:

blowtorch

… with which you melt down the heatshrink over the tip, then fit it to the PCB and solder the probe wire:

testing

At this point it’s wise to fit the batteries and test that the probe works, as the next stage is to heatshrink the entire circuit to the left of the LEDs:

finished

Use

Using the probe is incredibly simple – however note that it’s designed for working with 5V logic. If you need to use higher voltages the probe can be assembled with slightly different circuit to take care of that eventuality. Moving forward simply clip the lead to GND on the circuit under test, then probe where you want to measure. The LEDs will indicate either HIGH, LOW or the PULSE LED will light when a fault is apparent, or other need for further research into the circuit. Here’s a quick demonstration probing a signal from an Arduino board:

Conclusion

This through-hole version of the logic probe kit was much easier to construct than the SMD version, and worked first time. A logic probe itself is a very useful tool to have and I highly recommend this kit for the beginner who enjoys projects and is growing their stable of test equipment on a budget. You can find the kit at my store – Tronixlabs Australia.

Full-sized images available on flickr.  And if you made it this far – check out my book “Arduino Workshop” from No Starch Press.

Finally, check out tronixlabs.com.au – which along with being Australia’s #1 Adafruit distributor, also offers a growing range and great value for supported hobbyist electronics from Altronics, DFRobot, Freetronics, Jaycar, Pololu and much much more.

visit tronixlabs.com

As always, have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website.

Posted in altronics, K2586, kit, kit review, logic probe, silicon chip, test equipment, tronixstuffComments (2)

Australian Electronics Nostalgia – Talking Electronics Kits

Introduction

From 1981, Australian electrical engineer Colin Mitchell started publishing his home-grown electronics magazine “Talking Electronics”. His goal was to get people interested and learning about electronics, and more so with a focus on digital electronics. It was (and still is) a lofty goal – in which he succeeded. From a couple of rooms in his home the magazine flourished, and many projects described within were sold as kits. At one stage there were over 150 Talking Electronics kits on the market. You could find the books and kits in retail outlets such as Dick Smith Electronics, and for a short while there was a TE store in Moorabbin (Victoria). Colin and the team’s style of writing was easy to read and very understandable – but don’t take my word for it, you can download the magazines from his website (they’re near the bottom of the left column). Dave Jones recently interviewed Colin, and you can watch those for much more background information.

Over fifteen issues you could learn about blinking LEDs all the way to making your own expandable Z80 board computer, and some of the kits may still be available. Colin also published a series of tutorial books on electronics, and also single-magazine projects. And thus the subjects of our review … we came across the first of these single-issue projects from 1981 – the Mini Frequency Counter (then afterwards we have another kit):

cover

How great is that? The PCB comes with the magazine. This is what set TE apart from the rest, and helped people learn by actually making it easy to build what was described in the magazine instead of just reading about it. For 1981 the PCB was quite good – they were silk-screened which was quite rare at the time:

pcb

pcbrear

And if you weren’t quite ready, the magazine also included details of a square-wave oscillator to make and a 52-page short course in digital electronics. However back to the kit…

Assembly

The kit uses common parts and I hoard CMOS ICs so building wasn’t a problem. This (original) version of the kit used LEDs instead of 7-segment displays (which were expensive at the time) so there was plenty of  careful soldering to do:

LEDsin

And after a while the counter started to come together. I used IC sockets just in case:

almostthere

The rest was straight-forward, and before long 9 V was supplied, and we found success:

powerup

To be honest progress floundered for about an hour at this point – the display wouldn’t budge off zero. After checking the multi-vibrator output, calibrating the RC circuits and finally tracing out the circuit with a continuity tester, it turned out one of the links just wasn’t soldered in far enough – and the IC socket for the 4047 was broken So a new link and directly fitting the 4047 fixed it. You live and learn.

Operation

So – we now have a frequency counter that’s good for 100 Hz to the megahertz range, with a minimum of parts. Younger, non-microcontroller people may wonder how that is possible – so here’s the schematic:

schematic

The counter works by using a multi-vibrator using a CD4047 to generate a square-wave at 50, 500 and 5 kHz, and the three trimpots are adjusted to calibrate the output. The incoming pulses to measure are fed to the 4026 decade counter/divider ICs. Three of these operate in tandem and each divide the incoming count by ten – and display or reset by the alternating signal from the 4047. However for larger frequencies (above 900 Hz) you need to change the frequency fed to the display circuit in order to display the higher (left-most) digits of the result. A jumper wire is used to select the required level (however if you mounted the kit in a case, a knob or switch could be used).

For example, if you’re measuring 3.456 MHz you start with the jumper on H and the display reads 345 – then you switch to M to read 456 – then you switch to the L jumper and read 560, giving you 3456000 Hz. If desired, you can extend the kit with another PCB to create a 5-digit display. The counter won’t be winning any precision contests – however it has two purposes, which are fulfilled very well. It gives the reader an inexpensive piece of test equipment that works reasonably well, and a fully-documented project so the reader can understand how it works (and more).

And for the curious –  here it is in action:

[Update 20/07/2013] Siren Kit

Found another kit last week, the Talking Electronics “DIY Kit #31 – 9V siren”. It’s an effective and loud siren with true rise and fall, unlike other kits of the era that alternated between two fixed tones. The packaging was quite strong and idea for mail-order at the time:

kitbox

The label sells the product (and shows the age):

kitlabel

The kit included every part required to work, apart from a PP3 battery, and a single instruction sheet with a good explanation of how the circuit works, and some data about the LM358:

kitparts

… and as usual the PCB was ahead of its’ time with full silk-screen and solder mask:

pcbtop

sirenpcbbottom

Assembly was quite straight-forward. The design is quite compact, so a lot of vertical resistor mounting was necessary due to the lack of space. However it was refreshing to not have any links to fit. After around twenty minutes of relaxed construction, it was ready to test:

PCBfinished

finished

It’s a 1/2 watt speaker, however much louder than originally anticipated:

Once again, another complete and well-produced kit.

Conclusion

That was a lot of fun, and I’m off to make the matching square-wave oscillator for the frequency counter. Kudos to Colin for all those years of publication and helping people learn. Lots of companies bang on about offering tutorials and information on the Internet for free, but Colin has been doing it for over ten years. Check out his Talking Electronics website for a huge variety of knowledge, an excellent electronics course you can get on CD – and go easy on him if you have any questions.

Full-sized images available on flickr. This kit was purchased without notifying the supplier.

And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

LEDborder

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in australia, counter, digital, electronics, frequency, history, kit review, learning electronics, magazine, talking, talking electronics, test equipment, tronixstuff, vintageComments (8)

Australian Electronics – David Jones interviews Colin Mitchell

Welcome back

In this post I would like to share a series of interviews conducted by Dave Jones from eevblog.com. Dave interviews Colin Mitchell from Talking Electronics. Throughout the 1980s and onwards, Colin published a range of electronics magazines, tutorials and a plethora of electronics kits – of which many are still available today. Personally I was a great fan of the TE products, and sold many of his books through my past retail career with DSE. I hope you enjoy these interviews, and if not – stay tuned for upcoming articles. Furthermore, I’ve reviewed one of the classic TE kits.

Once again, thanks to Dave Jones and of course Colin Mitchell from Talking Electronics for their interview and various insights.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in australia, education, electronics, history, talking electronicsComments (3)

Update – Upcoming Electronics Industry Documentary

Hello readers

Today I am going to introduce something quite different, yet hopefully interesting to you out there. The renowned director and cinematographer Karl von Muller has just released the roll-call trailer for his upcoming documentary titled “State of Electronics” – a discussion on the Electronics Industry in Australia. Although the focus is on the Australian electronics scene, much of the content and discourse within the documentary can be related to by those from many other countries.

However, Karl can explain it better:

After several months of researching, interviewing and filming, I’m excited to present the first public Trailer to my new Documentary “State of Electronics” – A discussion on the Electronics Industry in Australia. Even though the documentary is focused on Australian Electronics Design and Manufacture, much of it applies to all countries from around the world.

The discussion is focused initially on the world of Hobby Electronics and how it’s decline could affect the Electronics Industry in the future. The Documentary then discusses many issues that face industry including the issue of “Repair and Recycle”, “Education”, “Surface Mount Technology”, “Globalisation”, “Opportunities” and many many more off the cuff & candid comments from Industry professionals.

The Documentary features interviews with famous Australians and Industry professionals including Dick Smith, Dave L Jones, Doug Ford, Leo Simpson, Grant Petty, Matthew Pryor, Jonathan Oxer, Andy Gelme, Andrew Griffiths, Eugene Ruffolo & Bill Petreski. In the future, I am planning to interview just a few more before the final release of the Documentary soon.

Shot completely on the Canon 5DMK2, using the Zoom H4N Audio recorder. Directed, Edited and shot by Karl von Moller, this version of the trailer is largely ungraded and only has an FCP sound mix applied. Music track is composed by Karl von Moller also. Enjoy!

Please visit karlvonmoller.com for more on the progress and information on “State of Electronics”

Here is the new roll-call trailer:

… and the original trailer for those unfamiliar with the project:

This will surely be a fascinating and insightful documentary that we are all looking forward to. Nice one Karl!

Posted in education, electronics, historyComments (0)

Australian Electronics Nostalgia – “Funway Kits”

Hello readers

After viewing the trailer for Karl von Muller’s upcoming documentary State of Electronics – A discussion on the Electronics Industry in Australia, it brought back some fond memories of bashing about with a range of kits from many years ago. So today we will have a look at a few of them. But first some history (feel free to correct me here)…

In 1968 an enthusiastic man by the name of Dick Smith started a small car radio shop in Neutral Bay, Sydney. Although he had many ups and downs – through extremely hard work, marketing in ways Australia had never seen before (see the bus below), and revolutionising electronics and computer retailing in this country – he built up Dick Smith Electronics to a company so large he sold it for a huge sum and moved on to other successful ventures. You can download his biography from here.

Dick Smith Electronics’ stores were the place to go for components, a huge range of electronic kits, an interesting range of computers (in [earlier] kit and assembled form), amateur and CB radio – all the fun stuff. You would almost need a shotgun to clear the store out on a Thursday night or Saturday afternoon. There were also repair centres in each capital city and head office, that employed people to fix things for warranty service (and they would fix kits for a price as well). Before the internet one would stalk the mailbox waiting for the new catalogue to arrive. I even worked there for four years in the 1990s. Unfortunately due to market changes and carbon-based factors, the stores are now just glorified flat-screen TV and video game outlets.

However, partly to educate people (and probably to make more money), Dick Smith wrote a series of books titled “Fun Way into Electronics”, starting with the first in 1979. This entailed twenty very basic electronic circuits, such as flashing LEDs using a multivibrator, basic transistor amplifiers, and a “beer powered radio” (I wonder how many children tried that fuel cell?). The book had paper overlays which you would glue onto a piece of chipboard, and screw the components down to form a circuit. Later editions would use a plastic board with holes:

3143205539_96d689c02e_z

The Funway book was very popular (and still is with some schools, Scout groups and so on), so Dick published volume two from 1980. Finally some “real” projects – twenty kits that required soldering and could be of some real use in the world. Items such as a shortwave radio, intercom, timing devices, digital counters, and a mosquito repeller of dubiuos success. However they sold very well, and in 1984 the final volume of the Funway trilogy was published – another ten projects – “each with an integrated circuit!”

The books were illustrated in a very clear, simple way sometimes hand-drawn but very neat. I suspect some women in the books were meant to resemble associates of Dick Smith, and in general the book is a ‘snapshot’ of the times. For example, the transistor radio:

radiobikewoman

Please note that I will not email you a .pdf of any of the books mentioned, so kindly don’t ask – they’re still Copyright DSE Pty Ltd. Part of my reasoning for this article was the fact that the Funway era has now drawn to a close. Whilst recently wandering about in a Dick Smith store for some reminiscing, I noticed the remaining stock of Funway 2 kits on the clearance bench and the matching volume two books, which compelled me to rescue them.

At the register, the sales clerk asked me “Why would you want to make a radio?” … ugh

So let’s take a trip back to 1980 and see how they perform!

[Update 07/07/2013]

Wow! I found another kit – project seventeen, the LED level display. It was designed to show audio levels in a blinky form – the addition of a pair to your home or car hi-fi would put those analogue VU meters to shame whilst impressing your friends. When fitted inside the optional box and the label applied, you could be as cool as the guy below looking like he’s getting revved up for a night at the discotheque:

discodude

So time to give it a whirl. I remember this kit back in 1985 when a friend gave it to me from someone else, he cut off the LEDs for himself, and I ended up with the useless board. Thanks Tony. Well 28 years later here I am with the brand-new version:

proj17

Otherwise everything was as expected, all the parts and the poor PCB included:

parts

pcb

Construction was relatively simple but tedious, 22 resistors, 10 diodes, 10 LEDs, 11 transistors etc… just careful and steady work to get it done. This would have kept a teenager busy for a good weekend inside. After an hour and an espresso the board was populated:

board

Not wanting to chop up any audio leads to test the kit, I’ve instead put some pins on the power supply and input pairs for a quick demonstration. For a signal I’ve attached a function generator and fed a sine wave at various low frequencies. Here it is in action:

In hindsight that’s a pretty fun kit, and with some careful work it would have looked good in a contemporary audio system. It probably could have been done a lot easier with an LM3914 however the cost may have been prohibitive at the time.

Next we have Project Sixteen –  the Electronic Siren. This is basically two 555 oscillators, one for the sound, and the other for the duration – which combined with a basic amplifier make a “hee-haw” sound. This kit would have been included as a good sales add-on for the Home and Car alarm kit also described in the book. Typical of the series, when you purchased a kit it would come with the bare minimum, just enough to make it work (excluding the battery):

sirenpartsss

Naturally a full range of extras would be mentioned in the book, available from the store when required. The PCB looks like it was made at home – examining this one I can now be more grateful than ever for silk-screening and solder-masking on current PCBs:

sirenpcbss

To make annoying people easier I will add in a SPDT toggle switch, and use some IC sockets for the 555s. Assembling the kit took no time at all, the instructions were clear and easy to follow:

sirenbookss

Starting the soldering caused some flashbacks to my childhood, which were interesting. Assembling this at my age was much quicker than as a young lad – my soldering style has changed, and I also have a Fluke 233 to check the resistor and capacitor values. There was one nod to the future in the kit, the polyester capacitor was replaced by an MKT. The only reason to use the IC sockets was so I could reuse the 555s later on. Moving on, here is the finished article:

sirenfinishedss

And did it work? Absolutely – have a listen:


It is really quite loud, that 0.25 watt speaker is being pushed quite hard. According to the book you can connect a horn-speaker directly to the output. Furthermore there are suggestions on how to alter the frequency and duration of the sounds. So overall, this was an easy to assemble kit that was still some fun even to this day.

The next kit to examine is Project Eleven – FM wireless microphone. This consists of an oscillator of around 100 MHz, which receives a signal via the tiny electret microphone. The book illustration shows a Donna Summer lookalike with a guitar, however one could imagine people building these kits and using them as ‘bugs’ and generally getting up to no good:

txbookss

Again, the clear images and instruction layouts are constant throughout the book. There were two errata sheets included with the components, as the design has been altered a few times. However they were easy enough to follow, and the correct replacement parts had been included:

txbitsss

Once more the PCB was a product of the time. After having issues with the siren kit’s PCB, I gave this one a good squirt with some Servisol PCB cleaner – that made a difference when it was time to solder:

txpcbss

From a beginner’s perspective, this would have been a slightly more difficult kit to assemble, due to the all the vertical resistors and the close spacing between the components. However this was to enable budding ASIO operatives to make their ‘bug’ as small as possible. From memory this is the trickiest of them all, the rest of the Funway 2 kits had generous PCB spacing. I must admit to breaking a 470 pF ceramic capacitor, but that was my own silly fault. However at the end it all came together nicely:

txworkss

And it worked.  I have a feeling that the variable capacitor was damaged a little from heat due to the soldering process, for some insane reason DSE supplied a plastic-encased version. Later on I will replace it and see how we go. But for the meanwhile, with a 20cm aerial wire, I could get about 5 metres out of it with a brick wall in between. Considering the target market for this, that’s pretty good.

The next kit is Project Seven – Pocket Transistor Radio. This is a basic amplitude-modulation radio receiver making use of the MK484 radio-receiver IC. This is a bog-standard simple AM receiver circuit that dates back to the early 1970s. However, it is simple and uses very few parts. Originally the kit was sold without an earpiece or socket, but the last few batches included everything but the battery and a switch:

radiopartsss

Once again there were two errata sheets – one explaining the different pinouts of the MK484/ZN414 radio IC, and another showing the evolution of the radio circuit, a capacitor had been replaced with a resistor. There were a couple of tricks to assembling this kit, some pin spacings were unnecessarily close together, and the leads on the antenna coils were terribly difficult for me to discern. Thankfully the book offered some great advice – use a multimeter to determine the resistance of each coil. The coil with the lower resistance is the aerial coil, and the higher resistance is the main coil. And once again I have added a power switch. After some trepidation, the main board was finished:

rxfinishedss

Ah – where is the 9V battery? With regards to the circuit, versions as published in the book and the errata sheet are quite inefficient with regards to power usage. Let’s have a look:

radiocircuitss

As part of my electronics learning process, I like to follow the circuit through to see what is going on. The book has the power being supplied by a 9V battery, then using a 6.8V Zener diode. What was the point of that? Instead, I put a link on the PCB instead of the zener, and now the power is from a single AA cell. Much, much cheaper to run now, the receiver only draws nine milliamps of current:

And to think some people have to recharge their music players every day. The radio worked from the first time the battery was connected, and is working very well. The volume/gain is controlled by the 5k trimpot, I have this set to around half-way to a comfortable volume. The reception is highly relative to the positioning of the ferrite rod aerial, so I have locked it into place using some blutac. It receives local AM stations very well, and also some rural stations from interstate. For the price and the amount of parts, this is a very simple, easy to construct receiver with excellent power consumption – which is begging for a solar panel for daytime use. Maybe next week! So we have another success.

Update! I found another kit – the “Universal Timer”. This is basically an over-engineered 555 timer that controls a simple SPDT relay. The 555 is configured as a monostable timer, and the duration controlled by a 1 mega ohm trimpot. I have a feeling the design brief was for an egg timer, based on the illustrations:

timerbookss

Once again, the illustrations of the final product don’t bear much of a resemblance to the contents of the basic kit:

timerpartsss

Again, the PCB was quite basic and needed a good clean:

timerpcbss

Construction was quite simple, all of the parts fitted nicely where they were meant to. Not bad considering the PCB was designed around thirty years ago, and the parts are much more recent – especially the relay. To make some sort of demonstration I had to add a few extras – a power switch, the piezo buzzer, IC socket and a potentiometer instead of the trimpot:

timerfinishedss

Though once again it worked, and I actually have a use for it – a shower timer for an intelligent person who seems to forget the concept of time when in the bathroom. A quick trip to the store for a moisture-proof IP67-rated box and we’ll be set.

Unfortunately with the discontinuation of these Funway kits means another opportunity to teach people has gone. I hope you found this article interesting, and helped motivate you to expand your knowledge and those of others in the STEM (science, technology, electronics and maths) area. If you have any Funway projects to share, please get in touch. Some higher-resolution images available on flickr.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in education, electronics, funway, history, kit review, learning electronicsComments (16)

Upcoming Electronics Industry Documentary

Hello readers

Today I am going to introduce something quite different, yet hopefully interesting to you out there. The renowned director and cinematographer Karl von Muller has just released the trailer for his upcoming documentary titled “State of Electronics” – a discussion on the Electronics Industry in Australia. Although the focus is on the Australian electronics scene, much of the content and discourse within the documentary can be related to by those from many other countries.

However, Karl can explain it better:

After several months of researching, interviewing and filming, I’m excited to present the first public Trailer to my new Documentary “State of Electronics” – A discussion on the Electronics Industry in Australia. Even though the documentary is focused on Australian Electronics Design and Manufacture, much of it applies to all countries from around the world.

The discussion is focused initially on the world of Hobby Electronics and how it’s decline could affect the Electronics Industry in the future. The Documentary then discusses many issues that face industry including the issue of “Repair and Recycle”, “Education”, “Surface Mount Technology”, “Globalisation”, “Opportunities” and many many more off the cuff & candid comments from Industry professionals.

The Documentary features interviews with famous Australians and Industry professionals including Dick Smith, Dave L Jones, Doug Ford, Leo Simpson, Grant Petty, Matthew Pryor, Jonathan Oxer, Andy Gelme, Andrew Griffiths, Eugene Ruffolo & Bill Petreski. In the future, I am planning to interview just a few more before the final release of the Documentary soon.

Shot completely on the Canon 5DMK2, using the Zoom H4N Audio recorder. Directed, Edited and shot by Karl von Moller, this version of the trailer is largely ungraded and only has an FCP sound mix applied. Music track is composed by Karl von Moller also. Enjoy!

Please visit karlvonmoller.com for more on the progress and information on “State of Electronics”

Here is the trailer for your enjoyment, on Vimeo or YouTube (below):

As an Australian, an educator and an electronics enthusiast, I encourage you to view the trailer and share it with as many people as possible. If you have contacts in the broadcast media, please talk to them about this documentary and suggest it for screening.

Posted in education, electronics, historyComments (2)


Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: