Tag Archive | "breakout"

April 2011 Competition – Results

Competition over!

Posted in competition, games, microcontrollersComments (0)

April 2011 Competition

Competition over!

Posted in competition, games, microcontrollersComments (0)

Tutorial: Arduino and the DS touch screen

Use inexpensive touch-screens with Arduino in chapter twenty-three of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – A tutorial on the Arduino universe.  The first chapter is here, the complete series is detailed here.

[Updated 19/01/2013]

Today we are going to spend some time with a touch screen very similar to the ones found in a Nintendo DS gaming unit. In doing so, we can take advantage of a more interesting and somewhat futuristic way of gathering user input. Please note that in order to use the screen without going completely insane, you will need the matching breakout board, as shown in the following image:


The flimsy flexible PCB runner is inserted into the plastic socket on the breakout board – be careful not to crease the PCB nor damage it as it can be rather easy to do so. (The screen can be easy to break as well…) However don’t let that put you off. You will most likely want to solder in some header pins for breadboard use, or sockets to insert wires. For this article it is being used with pins for a breadboard.

Before we start to use the screen, let’s have a quick investigation into how they actually work. Instead of me trying to paraphrase something else, there is a very good explanation in the manufacturer’s data sheet. So please read the data sheet then return. Theoretically we can consider the X and Y axes to be two potentiometers (variable resistors) that can be read with the analogRead() function. So all we need to do is use two analog inputs, one to read the X-axis value and one for the Y-axis value.

However, as always, life isn’t that simple. Although there are only four wires to the screen, the wires’ purpose alters depending on whether we are measuring the X- or Y-axis. Which sounds complex but is not. Using the following example, we can see how it all works.

Example 23.1

In this example, we will read the X- and Y-axis values returned from the touch screen and display them on an LCD module. (Or you could easily send the values to the serial monitor window instead). From a hardware perspective, you will need:

  • Arduino Uno or 100% compatible board
  • DS touch screen and breakout board ready for use
  • Solderless breadboard and some jumper wires
  • Arduino-ready LCD setup. If you are unsure about using LCDs, please revisit chapter 24 of my tutorials.

Connection of the touch screen to the Arduino board is simple, Arduino analog (yes, analog – more on this later) pins A0 to Y1, A1 to X2, A2 to Y2 and A3 to X1 – as below:


Mounting the rest for demonstration purposes is also a simple job. Hopefully by now you have a test LCD module for easy mounting 🙂


I have mounted  the touch screen onto the breadboard with some spare header pins, they hold it in nicely for testing purposes. Also notice that the touch screen has been flipped over, the sensitive side is now facing up. Furthermore, don’t forget to remove the protective plastic coating from the screen before use.

From a software (sketch) perspective we have to do three things – read the X-axis value, the Y-axis value, then display them on the LCD. As we (should) know from the data sheet, to read the X-axis value, we need to set X1 as 5V, X2 as 0V (that is, GND) and read the value from Y2. As described above, we use the analog pins to do this. (You can use analog pins as input/output lines in a similar method to digital pins – more information here. Pin numbering continues from 13, so analog 0 is considered to be pin 14, and so on). In our sketch (below) we have created a function to do this and then return the X-axis value.

The Y-axis reading is generated in the same method, and is quite self-explanatory. The delay in each function is necessary to allow time for the analog I/O pins to adjust to their new roles as inputs or outputs or analog to digital converters. Here is our sketch:

Next, let’s have a look at this example in action. The numbers on the LCD may be not what you expected…

The accuracy of the screen is not all that great – however first take into account the price of the hardware before being too critical. Note that there are values returned even when the screen is not being pressed, we could perhaps call these “idle values”. Later on you will learn tell your sketch to ignore these values if waiting for user input, as they will note that nothing has been pressed. Furthermore, the extremities of the screen will return odd values, so remember to take this into account when designing bezels or mounting hardware for your screen.

Each touch screen will have different values for each X and Y position, and that is why most consumer hardware with touch screens has calibration functions to improve accuracy. We can now use the X and Y values in sketches to determine which part of the screen is being touched, and act on that touch.

In order to program our sketches to understand which part of the screen is being touched, it will help to create a “map” of the possible values available. You can determine the values using the sketch from example 23.1, then use the returned values as a reference for designing the layout of your touch interface. For example, the following is a map of my touch screen:


Example 23.2

For the next example, I would like to have four “zones” on my touch screen, to use as virtual buttons for various things. The first thing to do is draw a numerical “map” of my touch screen, in order to know the minimum and maximum values for both axes for each zone on the screen:


At this point in the article I must admit to breaking the screen. Upon receiving the new one I remeasured the X and Y points for this example and followed the  process for defining the numerical boundaries for each zone is completed by finding average mid-points along the axes and allowing some tolerance for zone boundaries.

Now that the values are known, it is a simple matter of using mathematical comparison and Boolean operators (such as >, <, &&, etc)  in a sketch to determine which zone a touch falls into, and to act accordingly. So for this example, we will monitor the screen and display on the LCD screen which area has been pressed. The hardware is identical to example 23.1, and our touch screen map will be the one above. So now we just have to create the sketch.

After reading the values of the touch screen and storing them into variables x and y, a long if…then…else if loop occurs to determine the location of the touch. Upon determining the zone, the sketch calls a function to display the zone type on the LCD. Or if the screen is returning the idle values, the display is cleared. So have a look for yourself with the example sketch:

And see it in operation:

So there you have it, I hope you enjoyed reading this as much as I did writing it. Now you should have the ability to use a touch screen in many situations – you just need to decide how to work with the resulting values from the screen and go from there.


Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, BOB-09170, education, hardware hacking, LCD-08977, lesson, microcontrollers, nintendo ds, touch screen, tutorialComments (14)

Add a real-time clock to the Freetronics Eleven

Let’s add a DS1307 real-time clock to our Freetronics Arduino-compatible board.

Updated 18/03/2013 – this is also perfect for the Freetronics Eleven board.

Now and again I find myself making another kind of clock or timing device using the Arduino system, and each one has been making use of the Maxim DS1307 real-time clock IC. However every time another clock is being worked on, my DS1307 real-time clock shield needs to come out to play. Although in itself it is a nice shield, at the end of the day – the less you have the better. Originally I used a Freetronics TwentyTen board – which has now been superseded by their Eleven board, however they’re both identical for the purposes of this tutorial.

So what to do? As regular readers will know, my preferred board is the Freetronics Eleven, and within this we have a solution to the following problem:


The Freetronics team have thoughtfully provided a prototyping area in their board – and that will be a perfect home for the real time clock system. Being a cheapskate and a masochist – instead of  following others by using a smaller RTC module I will instead use parts already in stock (except for the battery) and install my own circuit. So, as always – we need a plan. The circuit itself is quite simple, the DS1307 data sheet has a fine example on page thirteen, and here is my interpretation:


So the parts required for our clock circuit will be:

  • IC1 – Maxim DS1307 I2C real-time clock IC
  • 8-pin IC socket
  • R1~R3 – 10k ohm 1% metal film resistors
  • X1 – 32.768 kHz crystal
  • B1 – Panasonic CR1220 3v battery with solder pins (Farnell part number 1298944) [data sheet one and two]
  • One header pin (from those 40-way strips)
  • some thin black single-core wire

The CR1220 battery was chosen over the usual CR2032 due to the smaller diameter. According to the DS1307 data sheet, the battery should last around ten years if it has a capacity of 48 mAh. Our CR1220 is 35 mAh – which will do nicely, perhaps seven years or so. That will have to do. Don’t forget to check the voltage of the battery before installation – it should be just over three volts.

Now to get everything arranged in the prototyping area. When doing this it pays to always have the schematic in front of you as well so you can refer to it when necessary. Planning to use protoboard of any size requires a good plan as well. After spending some time considering component placement, the final layout was as follows:


Each square on the grid represents one hole on the board. After you see the images below, everything will make sense. Before soldering away, it will pay to give the prototyping area a quick clean with some PCB cleaner.

Now it is finally time to get soldering. The first items were the battery, crystal and the resistors. Although the battery was designed to be soldered, I am always a little wary when applying heat to them. Two seconds with the hot iron was enough.

When soldering in the crystal (or anything else), try to keep in mind what the leads will be connecting to. For example, the crystal legs will need to connect to pins 1 and 2 of the IC socket. So bend the crystal leads in the direction of the respective IC socket pins. Doing so will make creating solder joins between them much easier:

The resistors were simple enough. Keep the excess clippings to make jumpers with later. Also notice how the right hand leg of R3 was bent around and brought back up to the top row – this is to help make connections with the 5V rail link:


The next item was the IC socket. Nothing to worry about there, just drop it in and solder away. Don’t forget to bridge the crystal pins to socket pins one and two, and the battery positive pin to IC socket pin three.

Next for the SQW pin. The DS1307 can also output a nice square wave at either 1Hz, 4.096 kHz, 8.192 kHz or 32.768 kHz, with the resulting signal being found on pin 7. It isn’t something really used that often, but you never know. So I soldered in one of these pins, which should make it easy enough to use later on:

Note that if you are using the SQW function, the DS1307 will merrily pulse away once it is set, until the power is cut – the square-wave generator is autonomous to the I2C bus once it has been set. And it remembers (as long as the backup battery is fine). For example, you can upload a sketch to set the SQW to 4.096 kHz, remove power, yank out the ATmega328, power up – and the SQW is still active.

Next we turn the board over, and solder in our jumper wires:


The lead on the top runs from the right-hand side of the pull-up resistors R1~R3 (when facing the top of the board) to the 5V pad. The bottom lead runs from pin four of the IC socket to the GND pad. The negative pin of the battery is also bent over and soldered to the GND pad. Also, connect all the resistors together as shown in the above image (below the TX pin). The next step is turn the board back over and make some more wired connections, the first being pin eight of the IC socket to the resistors and then to the 5V link on the rear:


The next are somewhat longer, they are the leads for the I2C bus. Run a wire from next to IC socket pin six all the way to (and through) the bottom-right hole of the TwentyTen (when facing the top); this will be the SCL line and soldered to analogue 5. Repeat again from IC socket pin five, this is the SDA line (as above) for analogue 4. The joints you have to solder them onto are not that large, however it can be done. Before soldering the wires in, heat up the existing joint to melting point then let it cool again – this makes actually soldering the wire in a lot easier:


And there we have it. At this stage, don’t plug the board in. Do some quality control: check that the soldered joints are complete; check that solder has bridged where you need it, and not where you don’t; use the continuity function (‘beeper’) of a multimeter to spot-check for shorts, and also follow the new 5V and GND lines to ensure they are connected correctly. And finally, insert the DS1307 IC into the socket.


OK – now for some test timing. If you have not worked with the DS1307 IC before, there is a full explanation of how it works within our Arduino tutorials. Here’s a sketch you can use to test the real-time clock. Once you have uploaded that sketch, open the serial monitor box at 9600 bps, and you should have something like this:

Now let’s check the 1 Hz output from the SQW pin:

Recall that you can generate four frequencies with your DS1307, here is an example sketch that does just that:

and here is the result – measured on a freqency counter:

My frequency counter is around twenty-two years old, please be patient with it as the sampling rate is not the best.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, clocks, ds1307, freetronics, hardware hacking, learning electronics, microcontrollers, tutorialComments (4)

Kit Review – adafruit industries DS1307 Real Time Clock breakout board kit

Hello readers

Today we are going to examine another small yet useful kit from adafruit industries – their DS1307 Real Time Clock breakout board kit. My purpose of acquiring this kit was to make life easier when prototyping my clock and timer Arduino-based projects on a breadboard. For example, blinky, or the various clock projects in the Arduino tutorials.

When breadboarding a DS1307 circuit, there are a few problems – the legs of the crystal are very fine, and break easily, and trying to mount the backup battery holder on the breadboard can be difficult due to their odd pin-spacing. That is why this breakout board is just perfect for breadboarding. Finally, (in Australia anyway) the price of the kit is less than the sum of the retail cost of the parts required. Anyhow, time to get cracking!

Again, as usual the adafruit kit packaging is simple, safe and reusable:


And with regards to the contents within:


… no surprises here, another quality solder-masked, silk-screened PCB  that has everything you need to know printed on it. Now that you can see the crystal (above image, bottom-right) you can realise why this board is a good idea. Furthermore, the inclusion of a quality battery and not some yum-cha special is a nice touch.

Assembly is incredibly simple. The IC position is printed on the PCB, the resistors are the same, and the capacitor and crystal are not polarised. Again, no IC socket, but perhaps it is time not to worry about that anymore – my soldering skills have improved somewhat in the last twelve months. Plus the DS1307 can handle 260 degrees Celsius for ten seconds when soldering (according to the data sheet.pdf).

However if you like to read instructions (which is generally a good idea) the excellent documentation is laid out here for your perusal.

Soldering the board is quite straightforward, however when it comes time to solder in the coin cell holder, note that there are large gaps in the mounting holes:


It is important to solder the pins solidly to the PCB, without letting lots of solder flow through the hole and block the other side. If you can bend the pins slightly closer to the circumference of the hole, soldering will be a lot easier. And don’t forget to put a blob of solder on the top-facing pad between the two pin holes before soldering in the coin cell holder.

Finally, when time to solder in the header pins, mount the lot onto a breadboard, and support the gap between the PCB and the breadboard at the opposite end of the PCB. An old CD works very well:


And within ten minutes of starting, we have finished!


Insert the backup cell (writing facing up!) in the holder and you’re ready to time. A new backup cell should last between seven to ten years, so unless you want to reset the clock completely, leave the cell in the board.

Now it is time to use the board. My only experience is with the Arduino-based systems, and even so using the DS1307 can seem quite difficult at the start. However with the right library and some basic reusable sketch modules you can do it quite successfully. The board is a standard DS1307 circuit, and is explained in great detail within the data sheet.pdf.

Don’t forget you can get a nice 1 Hz (or 4, 8 or 32 kHz) square wave from this IC – here is a sketch that allows you to control the square-wave generator:

And a video demonstration:

Well I hope you found this review interesting, and helped motivate you to expand your knowledge and work with real-time clocks, Arduino and the I2C bus.

You can purchase the kit directly from adafruit industries.

As always, thank you for reading and I look forward to your comments and so on. Furthermore, don’t be shy in pointing out errors or places that could use improvement. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts. Or join our new Google Group. High resolution images are available on flickr.

[Note – The kit was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

Posted in adafruit, ds1307, kit review, microcontrollers, real time clock, tutorialComments (6)

Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: