Tag Archive | "capacitance"

Project Review – Silicon Chip Capacitance Substitution Box


Every month Australian electronics magazine Silicon Chip publishes a variety of projects, and in some cases various (well … one of two) electronics retailers will pick up the project and offer it as a kit. However for an increasing number of new projects they don’t, which leaves the interested reader with one option – build the entire project from scratch.

But thankfully this is no longer the case – as the team from Silicon Chip now offer a range of project PCBs and matching front panels for sale directly from their website. Although buying these parts is not the cheapest option, it gives the busy person who likes making things a quick start – or the inexperienced more opportunities to complete a successful project.

So as a test of this new service, I bought the PCB and front panel for the Capacitance Substitution Box project described by Nicholas Vinen in the Juily 2012 issue of SC:


This is something I’ve meant to make for a while – but didn’t really have the inclination to make one from scratch, so it was neat to see a version published in the magazine. I believe the subjects in the magazine article are oftern prototypes, which explains the difference in colour for the front panel.

The parts arrived in a week after placing the order, and are of a high quality:

capacitance box panel

capacitance pcb front

capacitance pcb rear

When complete, the capacitance substitution box PCB and panel will fit nicely into an Altronics H0151 enclosure, so you don’t need to do any drilling or filing. The next task was to organise the required parts. The rotary switches, terminal posts and the usual odds and ends can be found at Altronics, Jaycar or other suppliers. However the main components – the capacitors – offered two options.

The first option is to simply use capacitors from personal stock or the stores. However the tolerance of these parts can vary wildly, with up to twenty percent either way. This is ok for simple uses, however when values are combined – the tolerance of larger values can negate the lower values completely. So instead I’ve chosen the second option – which involves using brand-name low-tolerance capacitors.

Thus I turned to element14 who stock not only a huge range of not only regular but also the low-tolerance capacitors, and can also have them on my desk usually by the next working day. Finally, it’s nice to have all the parts arrive in little bags… neatly organised ready to go:


It’s easy to search for low-tolerance parts with element14, as the automatic filtering has tolerance as a parameter:

element14 capacitors

Furthermore you can also ensure you have the voltage rating of at least 50V DC as well. So after half an hour the capacitor order was completed and arrived when expected – using parts from Panasonic, Vishay, and Wima. The tolerances of our capacitors used varied between one and ten percent, which will help improve the accuracy of the substitution box.


The PCB has the capacitor values labelled neatly on the silk-screen, so soldering in all the capacitors was a relatively simple but long operation. Having them arrive in separate packets made life a lot easier. During the soldering process it’s a good idea to have a  break or two, which helps you avoid fatigue and making any mistakes.

capacitance substitution box half finished

There may be a few capacitors that are a little too wide to fit with the others, so they can be mounted on the other side of the PCB:

capacitance substitution box wide capacitor

However they all end up fitting well:

capacitance substitution box half finished

The next step was to configure the first rotary switch for six position use, then cut the plastic stopped from the side of each rotary switch. In the following image you have a before and after example:

capacitance substitution box rotary switches

Now the rotary switches can have their shafts trimmed and then be soldered onto the PCB:

capacitance substitution box switches trimmed

However ensure you have the first rotary switch in the right way – that is the selections are selected across the top half, not the bottom. Remove the nuts from the rotary switches, and double-check all the capacitors are fitted, as once the next step is completed … going back will be difficult to say the least.

At this point the banana sockets can be fitted to the panel, and then soldered into place, and then you’re finished. Just place the panel/PCB combination inside the box and screw it down:

capacitance substitution box complete

Using the Capacitance Substitution Box

Does it work? Yes – however you don’t get exact values, there will always be a tolerance due to the original tolerance of the capacitors used and the stray capacitance of the wires between the box and the circuit (or capacitance meter). Nevertheless our example was quite successful. You can see the box in action with our Altronics LC meter kit in this video.

Again, using the best tolerance capacitors you can afford will increase the accuracy of this project.


Over time this would be a useful piece of equipment to have – so if your experiments or projects require varying capacitor value, this project will serve the purpose nicely. Plus it helps with mental arithmetic and measures of capacitance! Please do not ask me for copies of the entire Silicon Chip article, refusal may offend. Instead – visit their website for a reprint or digital access.

And if you enjoyed this article, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a third printing!) “Arduino Workshop”.

visit tronixlabs.com

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in capacitor, kit review, projects, silicon chip, substitution box

Kit review – High Accuracy LC Meter

Hello readers

Time for another kit review. Lately one of my goals has been to make life easier and in doing so having some decent test equipment. One challenge of meeting that goal is (naturally) keeping the cost of things down to a reasonable level. Unfortunately my eyesight is not the best so I cannot read small capacitor markings – which makes a capacitance meter necessary. Although I have that function within my multimeter, it is often required to read resistors in the same work session.

Thus the reason for this kit review – the High Precision LC Meter kit. The details were originally published in the May 2008 issue of Australia’s Silicon Chip magazine. The meter specifications are:

  • Capacitance – 0.1pF to over 800 nF with four-digit resolution;
  • Inductance – 10 nH to over 70 mH with four-digit resolution;
  • Accuracy of better than +/- 1% of the reading;
  • Automatic range selection, however only non-polarised capacitors can be measured.

The power drain is quite low,  between 8 (measurement) and 17 milliamps (calibration). Using a fresh 9V alkaline battery you should realise around fifty to sixty hours of continuous use. At this point some of you may be wondering if it is cheaper to purchase an LC meter or make your own. A quick search found the BK Precision 875B LCR meter with the same C range and a worse L range for over twice the price of the kit. Although we don’t have resistance measurement in our kit, if you are building this you already have a multimeter. So not bad value at all. And you can say you built it 🙂

Speaking of building, assembly time was just under two hours, and the kit itself is very well produced. The packaging was the typical retail bag:


The first thing that grabs your attention is the housing. It is a genuine, made in the US Hammond enclosure – and has all the required holes and LCD area punched out, so you don’t need to do any drilling at all:


The enclosure has nice non-slip rubberised edging (the grey area) and also allows for a 9V battery to be housed securely. The team at Altronics have done a great job in redesigning the kit for this enclosure, much more attractive than the magazine version. The PCB is solder-masked and silk-screened to fine standard:


There are two small boards to cut and file off from the main PCB. We will examine them later in the article. All required parts for completion were included, and it is good to see 1% resistors and an IC socket for the microcontroller:


At first I was a little disappointed to not have a backlit LCD module, however considering the meter is to be battery operated (however there is a DC socket for a plugpack) and you wouldn’t really be using this in the dark, a backlight wouldn’t be necessary. Construction was easy enough, the layout on the PCB is well labelled, and plenty of space between pins. Lately I have started using a lead-former, and can highly recommend the use of one:


Assembly was quite simple, just start with the lower profile components:



… then mount the LCD and the larger components:


… the switches and others – and we’re done:


The only problem at this point was the PCB holes for the selector switch, one hole was around 1mm from where it needed to be. Instead of drilling out the hole, it was easier to just bend up the legs of the switch and keep going:


At this stage one has to cut out two supports from the enclosure, which can be done easily. Then insert the PCB and solder to the sockets and power (9V battery snap). Initial testing was successful (after adjusting the LCD contrast…


If you look at the area of PCB between the battery and the left-hand screw there are eight pins – these are four pairs of inputs used to help calibrate and check operation of the meter. For example, by placing a jumper over a pair you can display the oscillator frequency at various stages:


Furthermore, those links can also be used to fine-tune the meter. For example one can increase or decrease the scaling factor and the settings are then stored in the EEPROM within the microcontroller. However my example seemed ok from the start, so it was time to seal up the enclosure and get testing. Starting with a ceramic capacitor, the lowest value in stock:


Spot-on. That was a good start, however trying to bend the leads to match the binding posts was somewhat inconvenient, so I cut up some leads and fitted crocodile clips on the end. The meter’s zero button allows you to reset the measurement back to zero after attaching the leads, so stray capacitance can be taken into account.

Next, time to check the measurement with something more accurate, a 1% tolerance silvered-mica 100 picofarad capacitor:


Again, the meter came through right on specification. My apologies to those looking for inductor tests – I don’t have any in stock to try out. If you are really curious I could be persuaded to order some in, however as the capacitance measurement has been successful I am confident the inductance measurement would also fall within the meter’s specifications.

As shown earlier, there were two smaller PCBs included:


The top PCB is a shorting bar used to help zero the inductance reading, and the lower PCB is used to help measure smaller capacitors and also SMD units. A nice finishing touch that adds value to the meter. The only optional extra to consider would be a set of short leads with clips or probes to make measurement physically easier.

When reading this kit review it may appear to be somewhat positive and not critical at all. However it really is a  good instrument, considering the accuracy, price, and enjoyment from doing it yourself. It was interesting, easy to build, and will be very useful now and in the future. So if you are in the market for an LC meter, and don’t mind some work – you should add this kit to your checklist for consideration. It is available from our store – Tronixlabs.com


visit tronixlabs.com

… which along with being Australia’s #1 Adafruit distributor, also offers a growing range and Australia’s best value for supported hobbyist electronics from DFRobot, Freetronics, Seeedstudio and much much more.

As always, have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website.

Posted in K2533, kit review, LC meter, test equipment, tronixlabsComments (18)

Kit Review – Silicon Chip Low Capacitance Meter adaptor for DMMs

Hello readers

Time again for another kit review. In the spirit of promoting all things electronic and Australian, we’re going to look at a kit that was published in our electronics magazine Silicon Chip (March 2010) – their Low-capacitance meter adaptor for DMMs. Simply put, it converts capacitance (from a theoretical 1 picofarad) to millivolts, which you can then read with almost any digital multimeter. This is useful as even more expensive multimeters (such as my Fluke 233) only measure down to 1 nanofarad (1000 picofarads). Although this kit is available on the Australian market, the retailers will export to those abroad. If you are outside Australia and having trouble sourcing one, send me an email. Moving on…

Here is our unassuming finished product:


Please note that this is not an open-source product, so you need to either purchase the kit of parts, or a back-issue of Silicon Chip magazine, March 2010 for the schematic and instructions. Now it is time to get started. But before that, how does it work?

Without giving too much away, a very rough explanation would be that a square wave signal is formed, then cleaned up through a Schmitt trigger-inverter. This square wave is then split into two, one signal passing through the capacitor under test and some resistors, and the other signal passing through a calibration variable capacitor and the same value resistors – thereby both signals pass through two different RC circuits. Finally the two signals are fed through a XOR gate, which creates a series of positive pulses that are a function of the capacitor under test.

Kit assembly was not that difficult, like anything just take your time, read the instructions carefully, and don’t rush things. If you are happy with your through-hole soldering skills, and have a power drill, this kit will be easy for you to work with. Unusually for some kits, this one comes with almost everything you need:


The quality of the included housing is very good, there are metal threaded inserts for the screws; and even through the ICs are simple 74xx-series, sockets have been included. Resistors are metal film, the trimpots are enclosed multiturns – all very nice. I am a little disappointed with the housing/adhesive label combination however, in the past various kits from Jaycar would have a box with a nice silk-screened, hole-punched front panel. Such is life. The PCB is solder-masked and silk-screened, however a little less denser than PCBs from other kit suppliers:


And thus brings a slight issue with the housing and the PCB – either the PCB is too wide, or the box is too narrow. A quick clip of the PCB with some cutters will fix that:


The instructions are quite good – they are a reprint of the magazine article, and slightly modified by the kit production company. Furthermore, the silk-screening on the PCB makes things a breeze. The simple passives were easy to install, however take care not to overheat the variable capacitor, their casings can melt rather quickly:


Following that, the ICs were inserted, and the rotary switch. From experience, one should trim the shaft down to about a 25mm length before soldering it into the board. Take very good care when placing the rotary switch, there is a lump on the switch which matches the small circle at 8 o’clock on the PCB diagram. Finally, don’t forget to alter the switch so it only has four selections. Soldering it in can look difficult, but is not. Just push it into the PCB, checking it is flush, even and all the way in. Then bend a couple of the pins over, invert the PCB and solder away – as such:


Now it is time to start on the enclosure. Each end has two banana-type sockets, the left are the full binding-post, and the right are just sockets. Carefully mark where you want to start the holes – the positions are vertically half-way, and horizontally 15mm in from the edge, however double-check yourself. Always check the fit of the socket while drilling, as it is easy to go too far and make the holes too large – at which point you’ll have to buy another enclosure. Once you have the sockets fitted – on the left:


and on the right:


… you will need to solder the socket rear to the PCB pins (left) and a small link to the PCB pins (right). It is important to get a good, solid connection – as these sockets may come under a lot of use later on. Next it is time to start on the housing. If you can, photocopy the label so you have a drilling template:


You will notice in the above photo one of my favourite tools, a tapered reamer. Using that, you can carefully turn a small hole into a larger hole, without risking making a mess with a drill. Again, cut the rotary switch’s shaft before soldering:


And as punishment for using twitter at the same time, I had ended up drilling the back instead of the front. D’oh. However cosmetic appearance is secondary to functionality, so all is well. Next was to install the PP3 battery snap. The battery will be a tight fit, so a length of heatshrink has been supplied in order to avoid the battery case shorting with the PCB pin:


And finally we have finished soldering:


Now it is time for calibration. And for me to get a little cranky, which is quite rare as I am somewhat easygoing. Calibration requires three 1% tolerance capacitors, 100 pF, 1000 pF and 10000 pF. And they are not included with the kit. And can not be purchased from any of the kit retailers. So they had to be ordered from Farn… element-14 at a reasonable expense. Considering the kit production company also imports, wholesales and retails electronic components, they could have bought a volume of these special capacitors and added a few dollars to the price of the kit. Such is life. So here are the little buggers:


From top to bottom:

  • Silvered-mica 100 picofarad 1% tolerance, element-14 # 1264880, RS # 495745;
  • Polystyrene 1000 picofarad 1% tolerance, element-14 # 9520651, RS # 495868 (silvered mica) and
  • Polystyrene 10000 picofarad 1% tolerance, element-14 # 3358951, RS # 495953 (silvered mica)

However it is worth the effort to chase them down. There is no point using this kit if you calibrate with normal capacitors; their tolerance can be as much as 20 percent either way. Thankfully the calibration process is quite simple. You will need a small, plastic flat-blade screwdriver to make the adjustments, as your body has stray energy which can alter the capacitance measurements.

Before starting, connect your multimeter to the output sockets and set the range to millivolts – then adjust the variable capacitor until you have the meter display as close to zero as possible. This is used to ‘null out’ stray capacitance. Next, set the dial to A, connect the 100 pF capacitor to the input posts, and adjust VR3 until the meter displays one volt DC – this represents 100.0 picofarads:


I could not for the life of me get this to 1 volt. After fitting the case at the end, I tried again with the case on with the same result. It is very important to get the capacitor as close as possible to the binding posts, with such small values stray capacitance can affect the result. However in my line of work, one-tenth of a picofarad is not relevant. For now. Next, set the dial to B, connect the 1000 pF capacitor, and adjust VR2 until the meter displays 1 volt – this represents 1000 picofarads:


Excellent – spot on. Unfortunately the leads on my 10000 pF capacitor were not long enough to attach into the binding posts, so that step had to be passed. I will have to re-order the correct part next week and calibrate then. However the other two setting are basically working perfectly, which is a good indication for the general performance of the kit. Kudos to Jim Rowe from Silicon Chip magazine for this design. Before closing up the enclosure, I decided to wrap the battery with some paper, as having it  rub up against other parts is not a good idea:


Now for a test run – time to measure the smallest capacitors I have in stock, first a 4.7 picofarad ceramic:


and next, a 12 picofarad ceramic:


Excellent, we can call these readings a success. I was also quite amazed that the tolerance of the cheap ceramic capacitors was so low. Note that in real-life, you may not be able to have the capacitor under test directly connected to the binding posts. In these cases you will need a short set of heavy-gauge leads to the test capacitor. If you do this, you will need to adjust the variable capacitor to reset the display to account for stray capacitance in the leads.

In conclusion, this kit has proved very successful, with regards to assembly, the quality of components and instructions, and of course the final result. I made a few errrors with regards to the housing, but that didn’t affect the final result. And for less than fifty Australian dollars, I have a very low value capacitance meter. However in due course I would consider the purchase of a full LCR meter for greater accuracy and ease of frequent use (some can measure down to 0.1 picofarad). But for the time being, this has been an excellent, educational  and affordable solution. You can purchase the kit directly from Jaycar. High resolution images are available on flickr.

So have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

[Note – The kit was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

Posted in capacitance meter, jaycar, KC5493, kit review, learning electronicsComments (2)

Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: