Tag Archive | "circuits"

Kit Review – “Short Circuits” 3 Digit Counter


Time for another kit review and in this instalment we have a look at the “3 digit counter” kit from Tronixlabs. This is part of a much larger series of kits that are described in a three volume set of educational books titled “Short Circuits”.

Aimed at the younger readers or anyone who has an interest in learning electronics, these books (available from Tronixlabs) are well written and with some study and practice the reader will make a large variety of projects and learn quite a bit. They could be considered as a worthy 21st-century replacement to the old Dick Smith “Funway…” guides.

The purpose of this kit is to give you a device which can count upwards between zero and 999 – which can be used for various purposes and also of course to learn about digital electronics.


The kit arrives in typical retail fashion:

Jaycar Short Circuits Counter Kit packaging

Everything you need to make the counter is included except for the instructions – which are found in the “Short Circuits” volume two book – and IC sockets. Kits for beginners with should come with IC sockets.

Jaycar Short Circuits Counter Kit contents

The components are separated neatly in the bag above, and it was interesting to see the use of zero ohm resistors for the two links on the board:

KJ8234 Jaycar Short Circuits Counter Kit components

The PCB is excellent. The silk screening and solder-mask is very well done.

KJ8234 Jaycar Short Circuits Counter Kit PCB top

Jaycar Short Circuits Counter Kit PCB bottom KJ8234

Furthermore I was really, really impressed with the level of detail with the drilling. The designer has allowed for components with different pin spacing – for example the 100 nF capacitor and transistors as shown below:

Jaycar Short Circuits Counter Kit PCB detail KJ8234

The instructions in the book are very clear and are written in an approachable fashion:

Jaycar Short Circuits Counter Kit instructions KJ8234

Jaycar Short Circuits Counter Kit instructions two KJ8234

There’s also a detailed explanation on how the circuit works, some interesting BCD to decimal notes, examples of use (slot cars!) and a neat diagram showing how to mount the kit in a box using various parts from Jaycar – so you’re not left on your own.

Construction went well, starting with the low-profile parts:

Jaycar Short Circuits Counter Kit assembly 1 KJ8234

… then the semiconductors:

Jaycar Short Circuits Counter Kit assembly 2 KJ8234

… then the higher-profile parts and we’re finished:

Jaycar Short Circuits Counter Kit assembly finished KJ8234

There wasn’t any difficulty at all, and the counter worked first time. Although I’m not a new user, the quality of PCB and instructions would have been a contributing factor to the success of the kit.

How it works

The input signal for the counter (in this case a button controlling current from the supply rail) is “squared-up” by an MC14093 schmitt-trigger IC, which then feeds a MC14553 BCD counter IC, which counts and then feeds the results to a 4511 BCD to 7-segment converter to drive the LED digits which are multiplexed by the MC14553. For the schematic and details please refer to the book. Operation is simple, and demonstrated in the following video:

However you can feed the counter an external signal, by simply applying it to the input section of the circuit. After a quick modification:

Jaycar Short Circuits Counter Kit counter input KJ8234

… it was ready to be connected to a function generator. In the following video we send pulses with a varying frequency up to 2 kHz:


This is a neat kit, works well and with the accompanying book makes a good explanation of a popular digital electronics subject. There aren’t many good “electronics for beginners” books on the market any more, however the “Short Circuits” range fit the bill.

And finally a plug for our own store – tronixlabs.com – which along with being Australia’s #1 Adafruit distributor, also offers a growing range and Australia’s best value for supported hobbyist electronics from Altronics, Jaycar, DFRobot, Freetronics, Seeedstudio and much much more.

visit tronixlabs.com

As always, have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website.

Posted in education, electronics, kit, kit review, KJ8234, tronixlabs, tronixstuffComments (6)

Part review – NXP 74HC4066 Quad bilateral switch IC

Hello readers!

Today we are going to examine the 74HC4066 quad bilateral switch IC. My reason for writing this comes from a comment left by a reader on chapter nine of the Arduino tutorial. They suggested using a 4066 IC to control the cathodes of the LED matrix instead of resistors and NPN transistors. This was a good suggestion, however the 4066 can only switch a current of 10mA per pin. Luckily the 74HC4066 can handle up to 25mA per switch – so we’ll look into this instead.

First of all, let’s say hello:


This is the 14-pin DIP package. It is also available in surface mount, and other newer package styles. Although we are looking at an example from NXP, according to my main component supplier (element-14/Newark) this IC is also manufactured by Texas Instruments, ON Semi, ST Microelectronics and Fairchild. So, what is a quad-bilateral switch? Four switches in one IC. Here is a diagram:

Imagine a simple normally-open push button. You press the button, and current can flow through the switch. Using the 74HC4066, when current is applied to the E pin, current can pass through from the matching Y pin to the Z pin. As you can see above, there are four of these switches in the IC. This is where the benefit of the IC comes to mind, normally one might use a 1k ohm resistor and an NPN switching transistor as an electronic switch, and I have done so myself. But when you need a few of them, it can be easier to start using these 74HC4066s as long as the current requirements are met.

With regards to the current the IC can switch, Is, the maximum is 25mA per switch. This is more than enough to run a typical LED, TTL logic gate, etc. The other interesting parameter is the turn-on and turn off times – at 6 volts it can turn on in around 10 nanoseconds and turn off at around 13 nanoseconds (so a rough calculation – say it takes 30 nanoseconds to switch on and then switch off, that’s 33.3 million times per seconds (33.3 MHz). All these parameters and more are available from the data sheet (pdf). Someone correct me if I’m wrong!

That’s enough theory – let’s put it to work now. Our first demonstration is quite simple – just switch on and off some LEDs via a 74HC595 shift register and an Arduino. We send a number (0, 1, 2, 4, 8 ) to the shift register, which stays off, then sets pins Q0, Q1, Q2, Q3 high in order, which in turn activate the switches 1~4 on the 74HC4066. The 74HC4066 sends a current to each LED connected to the switch outputs.

Here is the schematic:


Laid out on the breadboard:


And the ubiquitous video:

And here is the Arduino sketch: demo1.pdf. Well that was interesting. I know these simple demonstrations may be… well a little simple, but after taking the time to build them from scratch you get a better understanding of the part and how they work. Practice makes perfect and all that. Anyhow, let’s have a look at something much more interesting – a very basic (!) digital to analogue converter. Consider the circuit below:


The 74HC4066 switches creates a final voltage through the sum of various currents being switched into the final output. First of all, here is a video of the switches being turned on and off one at a time:

and the corresponding Arduino sketch:demo2.pdf. The next video shows the results of sending decimal numbers 0~15 to the shift register – in effect continually adding the outputs of the pins until all pins are on, then in reverse:

and the corresponding Ardiono sketch:demo3.pdf.

Well I hope you found this part review interesting, and helped you think of something new to make. In conclusion I would consider the 74HC4066 easier and quicker for end user to use in projects (less pins to solder, etc) however using it could cost more depending on the volume required. Furthermore, this would only apply if the current restrictions of the IC are met.

So have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Notes: In writing this post, I used information from NXP, plus information and circuit inspiration from various books by Forrest Mims III.

Posted in 4066, 74HC4066, lesson, part review, tutorialComments (24)

Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: