Tag Archive | "clamp"

Review – Tenma 72-7222 Digital Clamp Multimeter

Hello readers

The purpose of this article is to examine the Tenma 72-7222 Digital Clamp Multimeter supplied for review by element-14/Farnell/Newark. The Tenma is a strongly featured yet inexpensive piece of test equipment – and considerably good value when you consider there is a current clamp for measuring high AC currents. So let’s have a look and see what we have.

Initial Impression

The Tenma arrives in a retail box, and generally nicely packaged. Naturally this has nothing to do with the performance of the meter at all, but at least they made an effort:

Opening up we find a nicely rounded group of items: the meter itself, some no-name AAA cells, test leads, a thermocouple for temperature measurement, a surprisingly articulate and well-written user manual, and the unit itself – all within a nice pouch. Wow – a pouch. Agilent? Fluke? All that money for a DMM and you don’t include a pouch?

Recent test equipment reviewers have made pulling apart the unit part of the review – so here goes… the back comes off easily:

No user-replaceable fuses… instead a PTC. A closer look at the PCB:

A very neat and organised PCB layout. There are plastic tabs that hold the PCB in along with a screw, however the case flexed too much for me to warrant removing the PCB completely. The spring for the clamp meter is locked in nicely and very strong, it won’t give up for a long time. Pulling the clamp base out reveals the rest of the PCB:

Installation of the battery is two stage procedure, first you need to remove a screw and then slide out the rear door:

… then insert the AAA cells into a frame, which is then inserted inside the unit:

The physical feel of the unit is relative to the purchase price, the plastic is simple and could be quite brittle if the unit was dropped from a height. The user manual claims the unit can be dropped from up to a height of one metre. Onto carpet? Yes. Concrete? Perhaps not. However like all test equipment one would hope the user would take care of it whenever possible. The clamp meter is very strong due to the large spring inside the handle, which can be opened up to around 28mm. The included leads are just on one meter long including the length of the probe:

The leads are rated to Category I 1000V (overkill – the meter can’t go that high) and 600 V Category II – “This category refers to local-level electrical distribution, such as that provided by a standard wall outlet or plug in loads (for example, 115 AC voltage for U.S. or 200 AC voltage for Europe). Examples of Measurement Category II are measurements performed on household appliances, portable tools, and similar modules” – definition from from National Instruments.  Unlike discount DMMs from unknown suppliers you can trust the rating to be true – otherwise element-14 wouldn’t be selling it.

Unit Specifications

  • Voltage Measuring Range DC:200mV, 2V, 20V, 200V, 600V
  • Voltage Measuring Range AC:2V, 20V, 200V, 600V
  • Current Measuring Range AC:2A, 20A, 200A, 400A
  • Resistance Measuring Range:200ohm, 2kohm, 20kohm, 200kohm, 2Mohm, 20Mohm
  • Temperature Measuring Range:-40°C to +1000°C
  • DMM Response Type:True RMS
  • DMM Functions:AC Current, AC/DC Voltage, Resistance, Temperature
  • Ranging:Auto
  • Display Count:1999
  • AC Current Range Accuracy:± (1.5% + 5d)
  • AC Voltage Range Accuracy:± (1.2% + 5d)
  • Accuracy:± (1.0% + 3d)
  • Current AC Max:400A
  • Current Range AC:2A, 20A, 200A, 400A
  • DC Voltage Range Accuracy1:± (0.8% + 1d)
  • Resistance Range Accuracy:± (1.0% + 2d)
  • Temperature Measuring Range:-40°C to +1000°C

The only measurement missed out on is DC current, however there is the Tenma 72-7224 which has DC current and frequency ranges. Finally, all the modes and buttons can be selected while holding the meter with one hand – for both left- and right-handed folk.

Measurement experience

Normally I would compare the measurements against my Agilent U1272A, however it’s out to lunch. Instead, a Fluke 233. First, AC voltage from the mains:

Next, a few DC voltage measurements:

Now for some resistance measurements. Higher values near the maximum of 20M Ohm can take around four seconds to measure:

Forward voltage of a 1N4004 diode:

dfv (1)

Now off to the kitchen for some more measurements – first with the thermocouple:

The boiling water test – 100 degrees Celsius (you can also select Fahrenheit if so inclined):

And now to test out the AC current clamp meter function with a 10A kettle at boiling point. First, using the 20A current range:

And then again on the 400A current range:

As always, it’s best to use the multimeter range that more closely corresponds with the current under test. The meter also has a continuity test with a beeper, however it was somewhat slow and would often take around one second to register – so nothing too impressive on that front. The meter can record the maximum value with the grey button, or hold a reading using the yellow button.

Conclusion

The Tenma 72-7222 works as advertised, and as expected. It is a solid little unit that if looked after should last a few years at a minimum. It certainly has a few limitations, such as the 1999 count display, lack of backlight, and the average continuity function. But don’t let that put you off. For the price – under Au$30 – it is a certified deal. If you need a clamp current meter for odd jobs or a casual-use multimeter and you are on a limited budget, the Tenma will certainly prove a worthwhile purchase. Full-size images are available on Flickr.

You can purchase a Tenma 72-7222 from element-14Farnell and Newark.

Thanks for reading! Have fun and keep checking into tronixstuff.com. Why not follow things on twitter, Google+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

[Note – The Tenma 72-7222 Digital Clamp Multimeter was a promotional consideration from element-14/Farnell/Newark]

Posted in 72-7222, clamp meter, element14, multimeter, review, tenma, test equipmentComments (4)

Kit review – Current Clamp Meter Adaptor

Hello readers

Time for another kit review. Over the last few days I have been enjoying assembling a useful piece of test-equipment – a Current Clamp Meter adaptor. This kit was originally described in the September 2003 issue of Silicon Chip magazine. The purpose of this adaptor is to allow the measurement of AC current up to around 600 amps and DC current up to 900 amps. A clamp meter is a safe method of measuring such high currents (which can end you life very quickly) as they do not require a direct connection to the wire in question. As you would realise even a more expensive type of multimeter can only safely measure around ten amps of current, so a clamp meter becomes necessary.

To purchase a clamp meter can be expensive, starting from around $150. Therein lies the reason for this kit – under $30 and a few hours of time, as well as a multimeter that can measure millivolts DC/AC.

How the adaptor works is quite simple. It uses a hall-effect sensor to measure magenetic flux which is generated by the current flowing through the wire being measured. The sensor returns a voltage which is proportional to the amount of magnetic flux. This voltage is processed via an op-amp into something that can be measured using the millivolts AC/DC range of a multimeter. As the copyright for the kit is held by Silicon Chip magazine, I cannot give too much away about the design.

You can purchase a complete kit from Tronixlabs, or build one yourself by following the article in the magazine.  The hall effect sensor UGN3503 is now out of production, but according to the data sheet (.pdf), the Allegro A1302 is a drop-in replacement.

Now, time to get started. To make life easier I forked out for the whole kit, which arrived as below:

bagofpartsss

Upon opening the bag up, one is presented with the following parts:

parts1ss

parts2ss

It is great to see everything required included with a kit. And the extra battery-clamp is a nice bonus. As usual an IC socket was not included, however these can be had for less than five cents each… so I have recently solved that problem by importing a few hundred myself. The hall effect sensor is very small; considering the graph paper below is 5mm square:

hallsensorss

The PCB was very well done – to a degree. The solder-mask and silk-screening was up to standard:

pcbss

… however a few holes needed some adjustment. Doing a component test-fit before soldering really paid off, as none of the holes for the PCB pins were large enough to accept the pins, and one of the sensor socket holes needed some modification:

holedrillss

A small hand-held drill is always a handy thing to have around. Once those errors were taken care of, actually soldering the components to the PCB was simple and took less than ten minutes. The potentiometer VR3 needed to be elevated by 3.5mm so it would fit through the enclosure panel in line with the power switch. As I couldn’t use PCB pins, a few link offcuts from the resistors worked just as well. When soldering the components, start with the low-profile items such as resistors, and finish with the switch and potentiometer:

pcbsolderedss

Now it was time to make the clamp. First up was to cut the iron-powdered toroidal core in half. All I had to do this with was a small hacksaw, so I hacked away at it for about half an hour. This process will make a mess, filings will go everywhere. So you will need some pointless rubbish to catch the filings with:

rubbishss

Each half of the core is placed inside the clamp. Until I am completely happy with the clamp they will be held in with blutac. A lead also needs to be constructed, with the sensor at one end and the 3.5mm stereo plug at the other. Some heatshrink is provided to cover the ribbon cable, but I recommend placing some over the solder joints where the sensor meets the ribbon cable, as such:

clampleadss

Next, the sensor needs to be placed between the two halves of the core – however a piece of plastic slightly thicker needs to sit next to the sensor, to stop the clamp damaging the sensor by closing down on it. Then, using the continuity function of a multimeter, check that there aren’t any shorts in the lead. Feed the newly-constructed lead through the battery clamp in order to keep things relatively neat and tidy, and you should result with something like this:

clampdoness

As you can see I have had a few attempts at cutting the core. The next step was to drill the holes for the enclosure, and then solder the wires that run from the PCB, run them through the hole in the side of the enclosure, and fasten the banana plugs to plug into the multimeter.

Now it was time to start calibration. There are two stages to this, and both are explained well in the instructions. This involves adjusting the trimpots which control the output voltage in millivolts, which can be affected by charge in the human body. Therefore it is recommended to use a plastic screwdriver/trimming tool to make the adjustments:

plasticsdriver

They are generally available in a set or pack for a reasonable price. The second stage of calibration involves creating a dummy DC current load using a 12v power supply, 5 metres of enamelled copper wire and a 18 ohm 5 watt resistor:

clampdoness

By putting 100 turns of the copper wire around one side of the clamp, putting the resistor in series and looping it into 12 volts, the current drawn will be 0.667 amps. (Ohm’s law – voltage/resistance = current). Then it is a simple task to set the multimeter to millivolts DC and adjust potentiometer VR1 until it displays 66.7 mA:

calibratedss

So there you have it – 66.7 millivolts on the multimeter represents 660 milliamps of current. So 1 amp of current will be 100 millivolts on your multimeter. Excellent – it works! The whole mess was inserted into the enclosure, and I was left with something that looked not terribly unprofessional (time to invest in a label-maker):

finishedss

It turns out that the thick OFC cable and the battery wouldn’t be able to coexist in the enclosure, so the battery is external.

The current clamp meter kit was an interesting and satisfying kit to assemble. Originally I assumed it would be simple, but it required plenty of drilling, cutting the darn toroid in half, tricky soldering for the clamp lead, and some patience with lining up the holes for the enclosure. Not a kit for the raw beginner, but ideal for teaching with a beginner to improve their assembly skills, or anyone with some experience. Plus it really does work, so money has been saved by not having to buy a clamp meter or adaptor.

You can order your own kit directly from our store at tronixlabs.com. High resolution images are available on flickr.

Finally, check out tronixlabs.com – which along with being Australia’s #1 Adafruit distributor, also offers a growing range and great value for supported hobbyist electronics from Altronics, DFRobot, Freetronics, Jaycar, Seeedstudio and much much more.

visit tronixlabs.com

As always, have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website.

Posted in altronics, current clamp meter, K2582, kit review, learning electronics, test equipment, tronixlabsComments (4)


Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: