Tag Archive | "common"

Tutorial – Arduino and the TLC5940 PWM LED Driver IC

Use the Texas Instruments TLC5940 16-Channel LED Driver IC with Arduino in Chapter 57 of our Arduino Tutorials. The first chapter is here, the complete series is detailed here.

Introduction

Today we are going to examine the Texas Instruments TLC5940 16-channel LED driver IC. Our reason for doing this is to demonstrate another, easier way of driving many LEDs – and also servos.  First up, here is a few examples of the TLC5940

TLC5940

The TLC5940 is available in the DIP version above, and also surface-mount. It really is a convenient part, allowing you to adjust the brightness of sixteen individual LEDs via PWM (pulse-width modulation) – and you can also daisy-chain more than one TLC5940 to control even more.

During this tutorial we’ll explain how to control one or more TLC5940 ICs with LEDs and also look at controlling servos. At this point, please download a copy of the TLC5940_data_sheet (.pdf) as you will refer to it through this process. Furthermore, please download and install the TLC5940 Arduino library by Alex Leone which can be found here. If you’re not sure how to install a library, click here.

Build a TLC5940 demonstration circuit

The following circuit is the minimum required to control sixteen LEDs from your Arduino or compatible. You can use it to experiment with various functions and get an idea of what is possible. You will need:

  • An Arduino Uno or compatible board
  • 16 normal, everyday LEDs that can have a forward current of up to 20 mA
  • a 2 kΩ resistor (give or take 10%)
  • a 0.1uF ceramic and a 4.7uF electrolytic capacitor

Take note of the LED orientation – and remember the TLC5940 is a common-anode LED driver – so all the LED anodes are connected together and then to 5V:

TLC5940 Arduino circuit

For this particular circuit, you won’t need an external 5V power supply – however you may need one in the future. The purpose of the resistor is to control the amount of current that can flow through the LEDs. The required resistor value is calculated with the following formula:

R = 39.06 / Imax

where R (in Ohms)  is the resistor value and Imax (in Amps) is the maximum amount of current you want to flow through the LEDs. For example, if you have LEDs with a 20 mA forward current – the resistor calculation would be:

R = 39.06 / 0.02 = 1803 Ohms.

Once you have the circuit assembled – open up the Arduino IDE and upload the sketch BasicUse.pde  which is in the example folder for the TLC5940 library. You should be presented with output similar to what is shown in the following video:

Controlling the TLC5940

Now that the circuit works, how do we control the TLC5940? First, the mandatory functions – include the library at the start of the sketch with:

and then initialise the library by placing the following into void setup():

x is an optional parameter – if you want to set all the channels to a certain brightness as soon as the sketch starts, you can insert a value between 0 and 4095 for in the Tlc.init() function.

Now to turn a channel/LED on or off. Each channel is numbered from 0 to 15, and each channel’s brightness can be adjusted between 0 and 4095.

This is a two-part process…

First – use one or more of the following functions to set up the required channels and respective brightness (PWM level):

For example, if you wanted to have the first three channels on at full brightness, use:

The second part is to use the following to update the TLC5940 with the required instructions from part one:

If you want to turn off all channels at once, simply use:

You don’t need to call a TLC.update() after the clear function. The following is a quick example sketch that sets the brightness/PWM values of all the channels to different levels:

and the sketch in action:

The ability to control individual brightness for each channel/LED can also be useful when controlling RGB LEDs – you can then easily select required colours via different brightness levels for each element.

Using two or more TLC5940s

You can daisy-chain quite a few TLC5940s together to control more LEDs. First – wire up the next TLC5940 to the Arduino as shown in the demonstration circuit – except connect the SOUT pin (17) of the first TLC5940 to the SIN pin (26) of the second TLC5940 – as the data travels from the Arduino, through the first TLC5940 to the second and so on. Then repeat the process if you have a third, etc. Don’t forget the resisotr that sets the current!

Next, open the file tlc_config.h located in the TLC5940 library folder. Change the value of NUM_TLCS to the number of TLC5940s you have connected together, then save the file and also delete the file Tlc5940.o also located in the same folder. Finally restart the IDE. You can then refer to the channels of the second and further TLC5940 sequentially from the first. That is, the first is 0~15, the second is 16~29, and so on.

Controlling servos with the TLC5940

As the TLC5940 generates PWM (pulse-width modulation) output, it’s great for driving servos as well. Just like LEDs – you can control up to sixteen at once. Ideal for creating spider-like robots, strange clocks or making some noise. When choosing your servo, ensure that it doesn’t draw more than 120 mA when operating (the maximum current per channel) and also heed the “Managing current and heat” section at the end of this tutorial. And use external power with servos, don’t rely on the Arduino’s 5V line.

To connect a servo is simple – the GND line connects to GND, the 5V (or supply voltage lead) connects to your 5v (or other suitable supply) and the servo control pin connects to one of the TLC5940’s outputs. Finally – and this is important – connect a 2.2kΩ resistor between the TLC5940 output pin(s) being used and 5V.

Controlling a servo isn’t that different to an LED. You need the first two lines at the start of the sketch:

then the following in void setup():

Next, use the following function to select which servo (channel) to operate and the required angle (angle):

Just like the LEDs you can bunch a few of these together, and then execute the command with:

So let’s see all that in action. The following example sketch sweeps four servos across 90 degrees:

And the following video captures those four servos in action:

 

If you servos are not rotating to the correct angle – for example you ask for 180 degrees and they only rotate to 90 or thereabouts, a little extra work is required. You need to open the tlc_servos.h file located in the TLC5940 Arduino library folder and experiment with the values for SERVO_MIN_WIDTH and SERVO_MAX_WIDTH. For example change SERVO_MIN_WIDTH from 200 to 203 and SERVO_MAX_WIDTH from 400 to 560.

Managing current and heat 

As mentioned earlier, the TLC5940 can handle a maximum of 120 mA per channel. After some experimenting you may notice that the TLC5940 does get warm – and that’s ok. However there is a maximum limit to the amount of power that can be dissipated before destroying the part. If you are just using normal garden-variety LEDs or smaller servos, power won’t be a problem. However if you’re planning on using the TLC5940 to the max – please review the notes provided by the library authors.

Conclusion

Once again you’re on your way to controlling an incredibly useful part with your Arduino. Now with some imagination you can create all sorts of visual displays or have fun with many servos. And if you enjoyed the tutorial, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a third printing!) “Arduino Workshop” from No Starch Press.

tronixstuff

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, BOB-10616, COM-10136, LED, PWM, servo, TI, tlc5940, tronixstuff, tutorialComments (15)

Tutorial: Arduino and the NXP SAA1064 4-digit LED display driver

Learn how to use the NXP SAA1064 LED display driver IC in chapter thirty-nine of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – a series of articles on the Arduino universe.

Updated 19/01/2013

In this article we investigate controlling the NXP (formerly Philips) SAA1064 4-digit LED display driver IC with Arduino and the I2C bus interface. If you are not familiar with using the I2C bus, please read my tutorials (parts one and two) before moving on. Although the SAA1064 is not the newest on the market, it is still popular, quite inexpensive and easy to source. Furthermore as it is controlled over the I2C bus – you don’t waste any digital I/O pins on your Arduino, and you can also operate up to four SAA1064s at once (allowing 16 digits!). Finally, it has a constant-current output – keeping all the segments of your LED display at a constant brightness (which is also adjustable).  So let’s get started…

Here is an example of the SAA1064 in SOIC surface mount packaging:

It measures around 15mm in length. For use in a solderless breadboard, I have soldered the IC onto a through-hole adaptor:

The SAA1064 is also available in a regular through-hole DIP package. At this point, please download the data sheet (.pdf) as you will need to refer to it during the article. Next, our LED display examples. We need common-anode displays, and for this article we use two Agilent HDSP521G two-digit modules (data sheet [.pdf]) as shown below:

For the uninitiated – a common anode display has all the segments’ anodes connected together, with the cathodes terminated separately. For example, our LED displays are wired as such:

Notice the anodes for the left digit are pin 14, and the right digit pin 13. A device that is connected to all the cathodes (e.g. our SAA1064) will control the current flow through each element – thereby turning each segment on (and controlling the brightness) or off. Our SAA1064 is known as a current-sink as the current flows through the LED, and then sinks into the IC.

Now, let’s get it connected. There is an excellent demonstration circuit on page twelve of the data sheet that we will follow for our demonstrations:

It looks pretty straight-forward, and it is. The two transistors are standard NPN-type, such as PN2222. The two transistors are used to each turn on or off a pair of digits – as the IC can only drive digits 1+3 or 2+4 together. (When presented in real life the digits are numbered 4-3-2-1). So the pairs are alternatively turned on and off at a rapid rate, which is controlled by the capacitor between pin 2 and GND. The recommended value is 2.7 nF. At the time of writing, I didn’t have that value in stock, so chose a 3.3 nF instead. However due to the tolerance of the ceramic capacitor it was actually measured to be 2.93 nF:

So close enough to 2.7 nF will be OK. The other capacitor shown between pins 12 and 13 is a standard 0.1 uF smoothing capacitor. Pin 1 on the SAA1064 is used to determine the I2C bus address – for our example we have connected it straight to GND (no resistors at all) resulting in an address of 0x70. See the bottom page five of the data sheet for other address options. Power for the circuit can be taken from your Arduino’s 5V pin – and don’t forget to connect the circuit GND to Arduino GND. You will also use 4.7k ohm pull-up resistors on the SDA and SCL lines of the I2C bus.

The last piece of the schematic puzzle is how to connect the cathodes of the LED displays to the SAA1064. Display pins 14 and 13 are the common anodes of the digits.

The cathodes for the left-hand display module:

  • LED display pins 4, 16, 15, 3, 2, 1, 18 and 17 connect to SAA1064 pins 22, 21, 20, 19, 18, 17, 16 and 15 respectively (that is, LED pin 4 to IC pin 22, etc.);
  • LED display pins 9, 11, 10, 8, 6, 5, 12 and 7 also connect to SAA1064 pins 22, 21, 20, 19, 18, 17, 16 and 15 respectively.
The cathodes for the right-hand display module:
  • LED display pins 4, 16, 15, 3, 2, 1, 18 and 17 connect to SAA1064 pins 3, 4, 5, 6, 7, 8, 9 and 10 respectively;
  • LED display pins  9, 11, 10, 8, 6, 5, 12 and 7 also connect to SAA1064 pins 3, 4, 5, 6, 7, 8, 9 and 10 respectively.
Once your connections have been made, you could end up with spaghetti junction like this…
Now it is time to consider the Arduino sketch to control out SAA1064. Each write request to the SAA1064 requires several bytes. We either send a control command (to alter some of the SAA1064 parameters such as display brightness) or a display command (actually display numbers). For our example sketches the I2C bus address “0x70 >> 1” is stored in the byte variable saa1064. First of all, let’s look at sending commands, as this is always done first in a sketch to initiate the SAA1064 before sending it data.
As always, we send the address down the I2C bus to awaken the SAA1064 using

Then the next byte is the instruction byte. If we send zero:

… the IC expects the next byte down the bus to be the command byte. And finally our command byte:

The control bits are described on page six of the data sheet. However – for four-digit operation bits 0, 1 and 2 should be 1; bit 3 should be 0; and bits 4~6 determine the amount of current allowed to flow through the LED segments. Note that they are cumulative, so if you set bits 5 and 6 to 1 – 18 mA of current will flow. We will demonstrate this in detail later on.

Next, to send actual numbers to be displayed is slightly different. Note that the digits are numbered (from left to right) 4 3 2 1. Again, we first send the address down the I2C bus to awaken the SAA1064 using

Then the next byte is the instruction byte. If we send 1, the next byte of data will represent digit 1. If that follows with another byte, it will represent digit 2. And so on. So to send data to digit 1, send

Although sending binary helps with the explanation, you can send decimal equivalents. Next, we send a byte for each digit (from right to left). Each bit in the byte represents a single LED element of the digit as well as the decimal point. Note how the elements are labelled (using A~G and DP) in the following image:

The digit bytes describe which digit elements to turn on or off. The bytes are described as such: Bpgfedcba. (p is the decimal point). So if you wanted to display the number 7, you would send B00000111 – as this would turn on elements a, b and c. To add the decimal point with 7 you would send B10000111. You can also send the byte as a decimal number. So to send the digit 7 as a decimal, you would send 7 – as 00000111 in base-10 is 7. To include the decimal point, send 135 – as 100000111 in base-10 is 135. Easy! You can also create other characters such as A~F for hexadecimal. In fact let’s do that now in the following example sketch:

In the function initDisplay() you can see an example of using the instruction then the control byte. In the function clearDisplay() you can see the simplest form of sending digits to the display – we send 0 for each digit to turn off all elements in each digit. The bytes that define the digits 0~9 and A~F are stored in the array digits[]. For example, the digit zero is 63 in decimal, which is B00111111 in binary – which turns on elements a,b,c,d,e and f. Finally, notice the second loop in displayDigits() – 128 is added to each digit value to turn on the decimal point. Before moving on, let’s see it in action:

Our next example revisits the instruction and control byte – we change the brightness of the digits by setting bits 4~6 in the control byte. Each level of brightness is separated into a separate function, and should be self-explanatory. Here is the sketch:

And again, see it in action:

For our final example, there is a function displayInteger(a,b) which can be used to easily display numbers from 0~9999 on the 4-digit display. The parameter a is the number to display, and b is the leading-zero control – zero – off, one – on. The function does some maths on the integet to display and separates the digits for each column, then sends them to the SAA1064 in reverse order. By now you should be able to understand the following sketch:

And the final example in action:

So there you have it – another useful IC that can be used in conjunction with our Arduino systems to make life easier and reduce the required digital output pins.

LEDborder

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, education, I2C, LED, lesson, microcontrollers, SAA1064, tutorialComments (27)


Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: