Tag Archive | "design"

Rapid stripboard prototyping made easy with Lochmaster


As a beginner in the world of electronics, sooner or later you’ll want to make a more permanent project than what can be constructed on the solderless breadboard. It’s easy to say “make your own PCBs” – however this can introduce a steep learning curve, not to mention the cost and time involved in waiting for PCBs to arrive – and hoping they’re correct. Thus for many people a happy medium is transferring prototype circuits over to stripboard – it’s really cheap (check ebay), you can keep various sizes on hand, and it’s quick.

However planning more complex circuits can be difficult – so it would be much easier with the use of a software design tool. Which brings us to the subject of our review – the Lochmaster v4.0 software from Abacom. It’s an incredibly easy to use developer’s tool for strip board projects. No more loose pieces of graph paper, soldering parts “one row too far over”, or lost design plans – you can now design stripboard projects efficiently and with ease.


Available for all versions of Windows from XP to 8, Lochmaster is less than ten megabytes and is distributed electronically after purchase – so backup your installation file when received. Otherwise it’s a quick install, you don’t need any extra framework software and due to the size will run well on less-specified machines. Although we have screen shots in the review below, you can download a trial version – so it won’t cost you anything to check it out yourself.

Designing your circuits

Once installed, opening Lochmaster for the first time you’re presented with a blank example of stripboard ready for your components:


However you can also use different types of prototyping board, such as varieties with all holes, edge connectors, mounting holes, different copper directions – or even make your own board to match a preferred style. Boar dimensions can be displayed in measurement units as well as “holes”. Then it’s a simple matter of selecting a part library from the drop-down list on the left of the window. For example, to add a 555 timer (which is an 8-pin DIL part) select the “ICs” library, click on the 8-pin enclosure and the following window appears, prompting you to fill out the appropriate details such as label, type etc:

Lochmaster 555

… then you can drop the 555 on the board. It then becomes an object which can be dragged around and placed where you need it. You can also create and modify the component libraries, and also create your own custom parts.

At that point, you might want to cut the tracks on the other side of the board. By clicking the “turn around” button the menu bar, you’re presented with the bottom of the board. Using the “add/split” button on the vertical toolbar between the library and the board, you can then virtually cut the tracks, for example:


You can also see the rounded circles which represent solder joints. After a few minutes we found dragging and dropping components onto the board very simple, and with the turn-around button you can easily flip sides until the placement looks good. After placing components, running the necessary links or wires is simple with the “draw jumper wire” tool. They can run in any direction, and also have corners, for example:

Lochmaster wires

You can also adjust the colours and thickness of the wires,  and of course can also be placed on the other side of the board – just flip it around and place the wires. After wiring things up and getting to the stage when you’re ready to build – you can test the connections to ensure you haven’t mis-counted holes or tracks. Using the “Test mode” tool you can click on tracks and the sections that are electrically connected to the point with the cursor are all highlighted – for example if you click on the point marked by the black arrow below, the connected tracks are highlighted:

lochmaster test

If you don’t like the 3D-rendered components, you can also work with normal 2D in colour or black and white:

lochmaster 2D

For final quality-control, you can also review the project at any time with “X-ray” view, which shows an outline of the parts on the other side, for example when looking at the bottom of the board, turning on X-ray results with:

Lochmaster xray

You can also generate component lists, which are great for documentation or simply making up a shopping list. It can be exported to .xls or text file, for example:

lochmaster list

And then you can export your project as an image (.jpg or .bmp), HPGL machine file – and print out both sides to serve as an assembly guide. There is also standalone file-viewer software, so you can share your designs with others who haven’t got the full Lochmaster software installed.

Example project

After experimenting with Lochmaster for a short while, we decided to test using it with a real project that a beginner might assemble. For example, a square wave oscillator from an old Talking Electronics magazine (click image for larger version):

square wave oscillator

Nothing too complex, but a useful tool for anyone experimenting with electronics. It’s a 555 astable with six different RC values which allows you to select from 1, 10, 100, 1 k, 10 k and 100 kHz outputs. The first step is to gather all the components together, so you know the widths and number of holes each needs on the stripboard:


The next step is to measure the board, as you can enter the dimensions via Board>Edit board layout… into Lochmaster to avoid having excess space in the design plan. Then after consulting the schematic and the single-layer PCB layout from the magazine, it’s a simple matter of placing the parts onto the virtual board after checking how the fit in on the real thing:

osciillator top

… and the flip-side:

oscillator bottom

Not a work of art – but it works.  (We didn’t fit the 100 kHz setting, as the capacitor wasn’t in stock). And that’s the neat thing – you can experiment with placement until you’re happy, then double-check connections before soldering. You might find even after some planning, that you may deviate from the plan. Fair enough, but just double-check what you’re doing. And a short while later, the results, top and bottom:

oscillator PCB top

oscillator PCB bottom


If you’re a beginner and don’t have the time, money and patience to design your own PCBs – Lochmaster is ideal. It’s a neater way to visualise physical circuits, as well as filing and sharing them with others.   To order your own copy, get the trial version, or if you have any questions please contact Abacom. Full-sized images of the screen-shots can be found on flickr. And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

[Note – Lochmaster software license was a promotional consideration from Abacom]

Posted in lochmaster, software review, stripboard, tronixstuff, tutorial, veroboardComments (1)

Clock Kit Round-up – December 2011

Hello Readers

If there’s one thing that I really like it’s a good clock kit. Once constructed, they can be many things, including:

  • a point of differentiation from other items in the room;
  • a reminder of the past (nixie tubes!) or possible visions of the future;
  • the base of something to really annoy other people;
  • a constant reminder to get back to work;
  • a source of satisfaction from having made something yourself!

So just for fun I have attempted to find and list as many interesting and ‘out of the ordinary’ kits as possible, and ignored the simple or relatively mundane kits out there. If you are in the clock kit business and want a mention, let me know. So in no particular order, we have:

adafruit industries “ice tube” clock

Based around a vintage Soviet-era vacuum IV-18 type fluorescent display, the ice tube clock is a rare kit that includes a nice enclosure which keeps you safe from the high voltages as well as allowing the curious to observe your soldering skills. I reviewed this kit almost a year ago and the clock is still working perfectly. Here is a video of the ice tube clock in action:

After some travelling meeting various people it seems that quite a few of us have an ice tube clock. There is something quite mesmerising about the display, perhaps helping to recall memories of our youth in the 1970s and 80s.

nootropic design Defusable Clock Kit

As recently reviewed, this kit allows you to build a simulated ‘countdown’ timer for a hypothetical explosive device that also doubles as a clock with an alarm. For example:

Whatever you do, don’t make a ‘fake bomb’ and leave it out in public! Only bad things could happen :)

ogilumen nixie tube kits

Not a clock kit as such, however they have made doing it yourself very easy with their power supply and IN-12A nixie board kits. We made one ourselves in a previous review, as shown below:

Alan Parekh’s Multimeter Clock Kit

This is certainly one from left field – using the analogue multimeters to display hours, minutes and seconds. See Alan describe his kit in this video:

Certainly something different and would look great on the wall of any electronics-themed area or would easily annoy those who dislike the status-quo of clock design.

akafugu VFD Modular Clock

The team at akafugu have created a modular baseboard/shield kit which holds a shield containing four IV-17 alphanumeric nixie tubes to create your own clock or display system:


Unlike some of the other nixie tube kits the firmware has been made public and can be modified at will. In the future different display shields will be available to extend the use of the kit.

tubeclock.com kits

This site has two kits available, one using either four or six Soviet-era IN-12 type nixie tubes:


… and another kit using the Soviet-era IN-14 nixie tubes:

You have to hand it to the former Soviet Union – they knew how to over-produce nixie tubes. One rare example where we can benefit from a command economy!

evil mad science clocks

The certainly not evil people have two clock kits, the first being the Bulbdial Clock Kit:

This uses a unique ring of LEDs around the circumference of the clock face to create shadows to mark the time. It is also available in a range of housing and face styles. Their other kit of interest is the Alpha Clock Five:

The photo of this clock doesn’t do it justice – the alphanumeric displays are 2.3″ tall, making this one huge clock. It also makes use of a Chronodot real-time clock board, which contains a temperature-controlled oscillator  which helps give it an accuracy of +-/ 2 minutes per year. Furthermore you can modify this easily using an FTDI cable and the Arduino IDE with some extra software. Would be great for model railways (or even a real railway station) or those insanely conscious about the time.

Kabtronics Clock Kits

This organisation has several clock kits which span a range of technology from the later part of the twentieth century. These guys can only be true clock enthusiasts! Starting with the 1950s, they have their Nixie-Transistor Clock:


Look – no integrated circuits, leaving the kit true to the era. If you need to hide from someone for a weekend, building this would be a good start. Next we move onto the 1960s and the Transistor Clock:


The 1960s brought with it LEDs so they are now used in this kit, however the logic is still all analogue electronics. However next we can move to the 1970s, and finally save some board space with the TTL Clock:


This would still be fun to assemble but somewhat less punishing for those who don’t enjoy solder fumes that much. However you still have a nice kit and something to be proud of. Finally, the last in the line is the 1980s-themed Surface-Mount Technology Clock:


So here we have a microcontroller, SMT components, and a typical reduction in board size. Their range is an excellent way of demonstrating the advances in technology over the years.

The GPS FLW Display Clock

Wow – this clock makes use of huge Burroughs B7971 15-segment nixie tube displays and a GPS receiver to make a huge, old-style/new-tech clock. Check out the demonstration video:

This thing is amazing. And it is actually cheaper to buy a fully-assembled version (huh). The same organisation also offers another GPS-controlled clock using IN-18 nixie tubes:


Again, it isn’t inexpensive – however the true nixie tube enthusiasts will love it. This clock would look great next to a post-modern vintage hifi tube amplifier. Moving forward to something completely different now, we have the:

adafruit industries monochron®

Almost the polar opposite of the nixie-tube clocks, the monochron uses an ATmega328 microcontroller and a 128 x 64 LCD module to create some interesting clock effects. For example:

Many people have created a variety of displays, including space invaders and the pong game simulation. The clock also includes the laser-cut acrylic housing which provides a useful and solid base for the clock.

Spikenzie Labs Solder : Time™ watch kit

Technically this is a watch kit, however I don’t think that many people would want to walk around wearing one – but it could be used in more permanent or fixed locations. Correct me if I’m wrong people. However in its defence it is a very well designed kit that is easy to solder and produces a nice clock:

It uses a separate real-time controller IC to stay accurate, and the design However this would be a great suggestion as a gift for a younger person to help them become interesting in electronics and other related topics. The asm firmware is also available for you to modify using Microchip MPLAB software if that takes your fancy.

Velleman Kits

The Velleman company has a range of somewhat uninspiring clock kits, starting with the Scrolling/Rolling LED Clock:

… the 2¼” 7-Segment Digital Clock:

This clock includes the housing and also accepts an optional temperature sensor, and therefore can display this as well. There is also the aptly-named – Digital LED Clock:


It tells the time and would be useful in a 1980s-era idea of the future movie set. The final velleman clock kit is the Jumbo Single-Digit Clock:

In all fairness this one looks quite interesting – the LED display is 57mm tall and the time is display one digit at a time. It is powered by a PIC16F630 however the firmware is proprietary to velleman.

Nocrotec Nixie Clocks

This company has a range of kits using nixie tubes and numitrons (low voltage incadescent displays in tubes). One particularly lovely kit is their IN-8 Blue Dream kit:


The blue glow at the base of the nixie tubes is due to an LED mounted at the bottom of the tube. Another aesthetically-pleasing kit is their Little Blue Something nixie clock. Check out their demonstration video:


More IN-12 nixie clocks from Germany, the first being the Manuela_HR. You can buy the kit without an enclosure, or choose from the ‘office’ style:

… or this funky number:

You can specify it with RGB LEDs which colour-cycle to provide the effect shown above. For those not too keen you can also buy the kits pre-assembled. Their other kit is the Sven:


It is available with IN-8 or IN-14 nixie tubes. The design quality of the enclosure is outstanding, a lot of effort has been made to produce a complete kit that “won’t look like a kit” when completed.

Minty Time

This is a small binary clock kit that fits in an Altoids tin:

This is a nice little kit as it is inexpensive, easy to make and very well documented. You could also mount this in a variety of flat surfaces, limited only by your imagination.

The Chronulator

Here we find a unique design that uses analogue panel meters in a similar method to the multimeter clock detailed previously. Here is an example of the completed kit:


The kit contains the electronics and meters (or you can delete the meters for a discount if you already have some) however the housing is up to you. Furthermore, this kit has some of the best instructions (.pdf) I have ever seen. They are a credit to the organisation. Our final clock kit is the …


This is another clock kit in the style of ‘suspicious bomb timer’-looking – and it pulls this off quite well. Consider the following video demonstration:

As well as a normal clock it can function as an alarm, stopwatch, countdown timer and lap counter. The instructions (.pdf) are well written and easy to follow. Furthermore the Denkimono is also well priced for the kit and delivery.

Hopefully this catalogue of clock kits was of interest to you. If you have found some other kits to add to the list, or wish to disagree or generally comment about this article please do so via the comment section below. This article was not sponsored in any way.

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in clocks, kit review, nixie, review, TTL, VFDComments (8)

Review – nootropic design defusable clock kit

Hello Readers

In this review we examine an interesting, fun and possibly a prankster’s delight – the “Defusable Clock Kit” from nootropic design. The purpose of this kit is to construct a clock that counts down in a similar method to “movie-style” bombs, and it has terminals to connect four wires to the board. When the countdown timer is beeping away, you need to choose which wire to cut otherwise the “bomb” (alarm) goes off.

Furthermore, it also functions as a normal clock with an alarm, so you can use it daily normal activities. And finally it is based on the Arduino system which allows the kit to be reprogrammed at a later date. Now let’s move forward by examining kit construction.


The kit arrives in a re-sealable antistatic pouch that can be reused without any effort:


Detailed instructions can be found on the product website. The kit has a very clear and well-detailed silk screen on the PCB:

All the parts required are included, as well as an IC socket for the microcontroller:

Moving forward, the first parts to solder in are the resistors:

… then to the other lower-profile components:

… and the rest:

Which leaves us with the final product:

The clock is designed around simple Arduino-compatible circuitry, so if you wish to alter the firmware for the clock or upload your own sketch, you will need to fit the six-way header pins (in order to connect a USB-FTDI cable). As the pins are horizontal and tend to fall over, it’s easier to solder the first pin from the top of the PCB to hold it in place:

… then turn the PCB over and solder the rest.


Power is supplied via the DC socket on the PCB, and converted to 5V with a typical 7805 regulator. Therefore your input voltage can range between normal levels of 9~12VDC. Once the power is connected you can set the time for the clock and alarm for normal use. However if you feel like some sweat-inducing excitement, connect four wires each between the terminal blocks at the top of the PCB. Then press the red button to start the ten-second countdown. You can also increase or decrease the countdown time.

Your chances of defusing it in time can be quite low – by cutting one wire you can defuse it, by cutting two other wires nothing will happen and the clock keeps ticking – and by cutting the final wire… well, it’s all over. The wires are randomly chosen each time so you can’t predict which will be the correct wire. (Unless you change the firmware). Now let’s see the clock in action:

At this juncture it would be appropriate to warn the users of this kit not to … well, misuse the clock. To be honest I’m surprised such a kit originated from the US in the first place, but then again it never hurts to have a sense of humour. But seriously, to the untrained eye or casual security guard – this kit will look pretty damn real. So no making any mock explosive models with Play-Doh or metal cylinders and leaving them on the train or bus or under someone’s toilet seat. Then again, that would be good for a laugh – so please keep it at home, not in the railway station.

Further expansion

As mentioned earlier this kit is Arduino (Duemilanove) compatible, you can upload new sketches using a 5V FTDI cable or swapping the microcontroller over in another Arduino-style board. You have four LEDs, a 4-digit 7-segment LED module, a buzzer, and four digital I/O pins via the terminal block on the top-right of the PCB which could control external devices. Furthermore you can download and examine the clock sketch to modify or deconstruct it to determine the operation.


Apart from the laughs and possible mayhem you could cause with this, the kit is easy to assemble and works as described. It would make a great present to get someone interested in electronics, or help them with soldering practice. Furthermore it is certainly unique, and would be fun at parties and other events. High-resolution images available on flickr.

To order your own nootropic design defusable clock kit, head over to tronixlabs.com – offering a growing range and Australia’s best value for supported hobbyist electronics from adafruit, DFRobot, Freetronics, Seeed Studio and much more.

visit tronixlabs.com

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website.

Posted in arduino, bomb, defusable, kit review, notropics, timer, tronixlabsComments (1)

Kit review – nootropic design Digit Shield

Hello readers

Time once again to examine another kit. This week we have the nootropic design Digit Shield for Arduino Uno/Duemilanove and compatible boards. Although a finger can be called a digit this shield is not some sort of biotechnological experiment – instead it gives us four seven-segment LED displays to show various forms of numerical data from our Arduino sketches.

Although many people may be tempted to use a standard LCD unit, there are a few advantages to using an LED display – such as digit size, enhanced readability in daylight, and LED displays are generally much more robust than LCDs. Therefore there should be many uses for the Digit Shield. Furthermore, the people at nootropic design have been awesome as they support the Open Hardware Definition 1.0, and the Digit Shield design files have been made available under Creative Commons attribution-share alike.

First let’s run through construction, then operation with some demonstrations. The kit arrives in a nice reusable bag with a pointer to the online instructions:


Kit construction was relatively simple thanks to the excellent instructions by nootropic design. All the parts required for completion are included, except for IC sockets:


My demonstration kit included green LED displays, however it is also available in red-orange, depending on the retail outlet you choose. Once again the PCB is well laid out, with a good solder mask and a nicely labelled silk screen on top:


Now to start soldering. The process is nothing out of the ordinary, and should take around half an hour at the most. First in are the resistors:


Notice how the current-limiting resistors for the LED segments will be under the LED displays. So now we solder in the LED modules and create a resistor jail:


Now for the shift register and BCD to decimal ICs. I found inserting them a little tricky due to my large hands and the LED display already being in place, so it would be easier to fit the ICs before the LED modules:


This leaves us with the transistors, capacitors, header sockets and the reset button:


After soldering the reset button, you may need trim down the solder and legs (as shown below) otherwise there is a possibility they will rub the DC input socket on the Arduino board:

Finally the shield pins are fitted and the shield is ready:


The next task is to download and install the Digit Shield’s Arduino library. The latest version can be found here. Extract the folder into your

folder, then restart the Arduino IDE software.  A quick test of the shield can be accomplished with the SimpleCounter sketch available from the inbuilt examples. To find this, select File>Examples>DigitShield>SimpleCounter in the Arduino IDE, and upload the sketch. Hold onto the desk as you watch some numbers increment:

Using the shield in your own sketch is quite simple. Instead of reinventing the wheel there is an excellent explanation of the various functions available on the lower section of this page. A very useful feature is when the shield cannot display a number – it shows all four decimal points instead. The only slight criticism that comes to mind is the inability to directly display hexadecimal digits A~F, as the LED units lend themselves nicely to doing so; or the option of controlling each LED segment individually with a simple function. So let’s see if that is possible…

One of the joys of open hardware is the fact we can get the schematic, see how it works and attempt to solve such dilemmas ourselves. For those without software that can read Cadsoft EAGLE files, here is the schematic in .pdf format. The section we need to see is how the LED segments are driven. Look for the 74HC595 and 74LS247 ICs. Serial data is shifted out from the Arduino digital pins to the 74HC595 shift register. (For more information about how 74HC595s work with Arduino please visit this tutorial).

Outputs A~D (Q0~Q3) represent binary-coded decimal output and the outputs E~H (Q4~Q7) control the transistors which select the current digit to use. The BCD output is fed to the 74LS247 BCD to seven-segment drive IC. Although this is a very useful IC, it can only display the decimal digits and a few odd characters (see page two of the data sheet.pdf). So this leaves us unable to modify our sketches or the shield library to solve our problem. Such is life!

Perhaps the people at nootropic design can consider a change in the hardware for the next version to incorporate such requirements. However there are several projects available in the Digit Shield’s website that may be of interest, including a way to daisy-chain more than one shield at a time.

Nevertheless the Digit Shield is a simple kit that makes displaying Arduino-generated numerical data simple and clear. Furthermore lovers of blinking LEDs will have a ball. For further questions about the Digit Shield contact nootropic design or perhaps post on their forum.

As always, thank you for reading and I look forward to your comments and so on. Furthermore, don’t be shy in pointing out errors or places that could use improvement. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts, follow me on twitter or facebook, or join our Google Group for further discussion.

High resolution images are available on flickr.

[Note – The kit was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

Posted in arduino, kit review, notropicsComments (13)

Kit review – nootropic design Hackvision

Hello readers

Time for another kit review – the nootropics design Hackvision,  a nice change from test equipment. The purpose of the Hackvision is to allow the user to create retro-style arcade games and so on that can be played on a monitor or television set with analogue video input. Although the display resolution is only 128 by 96 pixels, this is enough to get some interesting action happening. Frankly I didn’t think the Arduino hardware environment alone was capable of this, so the Hackvision was a pleasant surprise.

Assembly is quick and relatively simple, the instructions are online and easy to follow. All the parts required are included:


The microcontroller is pre-loaded with two games so you can start playing once construction has finished. However you will need a 5V FTDI cable if you wish to upload new games as the board does not have a USB interface. The board is laid out very clearly, and with the excellent silk-screen and your eyes open construction will be painless. Note that you don’t need to install R4 unless necessary, and if your TV system is PAL add the link which is between the RCA sockets. Speaking of which, when soldering them in, bend down the legs to lock them in before soldering, as such:

Doing so will keep them nicely flush with the PCB whilst soldering. Once finished you should have something like this:


All there is to do now is click the button covers into place, plug in your video and audio RCA leads to a monitor, insert nine volts of DC power, and go:


Nice one. For the minimalist users out there, be careful if playing games as the solder on the rear of the PCB can be quite sharp. Included with the kit is some adhesive rubber matting to attach to the underside to smooth everything off nicely. However only fit this once you have totally finished with soldering and modifying the board, otherwise it could prove difficult to remove neatly later on. Time to play some gamesin the following video you can see how poor my reflexes are when playing Pong and Space Invaders:

[ … the Hackvision also generates sounds, however my cheap $10 video capture dongle from eBay didn’t come through with the audio … ]

Well that takes me back. There are some more contemporary games and demonstration code available on the Hackvision games web page. For the more involved Hackvision gamer, there are points on the PCB to attach your own hand-held controls such as paddles, nunchuks and so on. There is a simple tutorial on how to make your own paddles here.

Those who have been paying attention will have noticed that although the Hackvision PCB is not the standard Arduino Duemilanove-compatible layout, all the electronics are there. Apart from I/O pins used by the game buttons, you have a normal Arduino-style board with video and audio out. This opens up a whole world of possibilities with regards to the display of data in your own Arduino sketches (software). From a power supply perspective, note that the regulator is a 78L05 which is only good for 100mA of current, and the board itself uses around 25mA.

To control the video output, you will need to download and install the hackvision-version arduino-tvout library. Note that this library is slightly different to the generic arduino-tvout library with regards to function definitions and parameters. To make use of the included buttons easier, there is also the controllers library. Here is a simple, relatively self-explanatory sketch that demonstrates some uses of the tvout functions:

And the resulting video demonstration:

I will be the first to admit that my imagination is lacking some days. However with the sketch above hopefully you can get a grip on how the functions work. But there are some very good game implementations out there, as listed on the Hackvision games page. After spending some time with this kit, I feel that there is a lack of documentation that is easy to get into. Sure, having some great games published is good but some beginners’ tutorials would be nice as well. However if you have the time and the inclination, there is much that could be done. In the meanwhile you can do your own sleuthing with regards to the functions by examining the TVout.cpp file in the Hackvision tvout library folder.

For further questions about the Hackvision contact nootropic design or perhaps post on their forum. However the Hackvision has a lot of potential and is an interesting extension of the Arduino-based hardware universe – another way to send data to video monitors and televisions, and play some fun games.If you are looking for a shield-based video output device, perhaps consider the Batsocks Tellymate.

As always, thank you for reading and I look forward to your comments and so on. Furthermore, don’t be shy in pointing out errors or places that could use improvement. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts, follow me on twitter or facebook, or join our Google Group for further discussion.

High resolution images are available on flickr.

[Note – The kit was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

Posted in arduino, games, hackvision, kit review, LCD, microcontrollers, notropicsComments (2)

Kit review – nootropics design EZ-Expander Shield

Hello readers

Today we are going introduce an inexpensive yet useful kit for Arduino people out there – the nootropic design EZ-Expander shield. As the name would suggest, this is an Arduino shield kit that you can easily construct yourself. The purpose of the shield is to give you an extra 16 digital outputs using only three existing digital pins. This is done by using two 74HC595 shift registers – whose latch, clock and data lines are running off digital pins 8, 12 and 13 respectively. For more information about the 74HC595 and Arduino, read my tutorial here, or perhaps download the data sheet.

Before moving forward I would like to note that the kit hardware is licensed under Creative Commons by-sa v3.0, and the design files are available on the nootropic design website; the software (Arduino library) is licensed under the CC-GNU LGPL. Nice one.

However, there is a library written instead to make using the new outputs easier. More on that later… now let’s build it and see how the EZ-Expander performs. Packaing is simple and effective, like most good kits these days – less is more:


Everything you need and nothing you do not. The design and assembly instructions can be found by visiting the URL as noted on the label. The parts are simple and of good quality:


The PCB is great, a nice colour, solder-masked and silk-screened very well. And IC sockets – excellent. There has been some discussion lately on whether or not kit producers should include IC sockets, I for one appreciate it. However, what I did not appreciate was having to chop up the long header socket to make a six- and eight-pin socket, as such:


Why the producers did not include real 6 and 8 pin sockets is beyond me. I’m not a fan of chopping things up, but my opinion is subjective. However there are a few extra pin-widths for a margin of error, so life goes on. The instructions on the nootropic design website were well illustrated, however the design is that simple you can determine it from the PCB. First, in with the capacitors for power smoothing:


Then solder in those lovely IC sockets and the header sockets:


Then time for the shield pins themselves. As usual, the easiest way is to insert the pins into another socket, then drop the new shield on top and solder away:


Finally, insert the shift registers, and you’re done:


The shield is designed to still allow access to the digital pins zero to seven, and the analogue pins. Here is a top-down view of the shield in use:


From a software perspective, download the library from here and install it into your arduino-00xx\libraries folder. Then it is simple to make use of the new outputs (20 to 35) on the shield, just include the library in your sketch as such:

then create an EZexpander object:

with which you can control the outputs with. For example,

sets the new output pin number 20 high. You can also buffer the pin mode requests, and send the lot out at once. For example, if you wanted pins 21, 22 and 23 to be HIGH at once, you would execute the following:

What happened is that you set the pin status up in advance, then sent all the commands out at once using the expander.doShiftOut(); function. The maximum amount of current you can source from each new output according to the designers is theoretically six milliamps, which is odd as the 74HC595 data sheet claims that 25 milliamps is possible. In the following demonstration I sourced 10 milliamps per LED, and everything was fine. Here is the sketch for your reference:

And the demonstration in action:

Overall, this is an inexpensive and simple way to gain more outputs on an Arduino Duemilanove/Uno or 100% compatible board. Also good for those who are looking for a kit for basic soldering practice that has a real use afterwards. High resolution images are available on flickr.

As always, thank you for reading and I look forward to your comments and so on. Furthermore, don’t be shy in pointing out errors or places that could use improvement. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts. Or join our Google Group.

Posted in arduino, kit review, notropicsComments (4)

Subscribe via email

Receive notifications of new posts by email.

Arduino Tutorials

Click for Detailed Chapter Index

Chapters 0 1 2 3 4
Chapters 5 6 6a 7 8
Chapters 9 10 11 12 13
Ch. 14 - XBee
Ch. 15 - RFID - RDM-630
Ch. 15a - RFID - ID-20
Ch. 16 - Ethernet
Ch. 17 - GPS - EM406A
Ch. 18 - RGB matrix - awaiting update
Ch. 19 - GPS - MediaTek 3329
Ch. 20 - I2C bus part I
Ch. 21 - I2C bus part II
Ch. 22 - AREF pin
Ch. 23 - Touch screen
Ch. 24 - Monochrome LCD
Ch. 25 - Analog buttons
Ch. 26 - GSM - SM5100 Uno
Ch. 27 - GSM - SM5100 Mega
Ch. 28 - Colour LCD
Ch. 29 - TFT LCD - coming soon...
Ch. 30 - Arduino + twitter
Ch. 31 - Inbuilt EEPROM
Ch. 32 - Infra-red control
Ch. 33 - Control AC via SMS
Ch. 34 - SPI bus part I
Ch. 35 - Video-out
Ch. 36 - SPI bus part II
Ch. 37 - Timing with millis()
Ch. 38 - Thermal Printer
Ch. 39 - NXP SAA1064
Ch. 40 - Push wheel switches
Ch. 40a - Wheel switches II
Ch. 41 - More digital I/O
Ch. 42 - Numeric keypads
Ch. 43 - Port Manipulation - Uno
Ch. 44 - ATtiny+Arduino
Ch. 45 - Ultrasonic Sensor
Ch. 46 - Analog + buttons II
Ch. 47 - Internet-controlled relays
Ch. 48 - MSGEQ7 Spectrum Analyzer
First look - Arduino Due
Ch. 49 - KTM-S1201 LCD modules
Ch. 50 - ILI9325 colour TFT LCD modules
Ch. 51 - MC14489 LED display driver IC
Ch. 52 - NXP PCF8591 ADC/DAC IC
Ch. 53 - TI ADS1110 16-bit ADC IC
Ch. 54 - NXP PCF8563 RTC
Ch. 55 - GSM - SIM900
Ch. 56 - MAX7219 LED driver IC
Ch. 57 - TI TLC5940 LED driver IC
Ch. 58 - Serial PCF8574 LCD Backpacks
Ch. 59 - L298 Motor Control
Ch. 60 - DS1307 and DS3231 RTC part I
Arduino Yún tutorials
pcDuino tutorials

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: