Tag Archive | "freetronics"

Arduino meets Las Vegas with the Freetronics DMD

Updated 05/11/2014

Time once more to have some fun, and this time by examining the Freetronics DMD “Dot Matrix Display” available from Tronixlabs. We will look at the setup and operation of the display. In a nutshell the DMD comprises of a board measuring approximately 320mm across by 160mm which contains 16 rows of 32 high-intensity red LEDs. For example, in the off state:

Connection of the DMD to your Arduino-compatible board is quite simple. Included with each DMD is a 2×8 IDC cable of around 220mm in length, and a PCB to allow direct connection to the Arduino digital pins D6~13:

Finally the cable connects to the left-hand socket on the rear of the DMD:

You can also daisy-chain more than one display, so a matching output socket is also provided. Finally, an external power supply is recommended in order to drive the LEDs as maximum brightness – 5V at ~4 A per DMD. This is connected to a separate terminal on the rear of the board:

Do not connect these terminals to the 5V/GND of your Arduino board!

A power cable with lugs is also included so you can daisy chain the high-intensity power feeds as well. When using this method, ensure your power supply can deliver 5V at 4A  for each DMD used – so for two DMDs, you will need 8A, etc. For testing (and our demonstration) purposes you can simply connect the DMD to your Arduino via the IDC cable, however the LEDs will not light at their full potential.

Using the display with your Arduino sketches is quite simple. There is an enthusiastic group of people working on the library which you will need, and you can download it from and follow the progress at the DMD Github page and forks. Furthermore, there is always the Freetronics forum for help, advice and conversation. Finally you will also need the TimerOne library – available from here.

However for now let’s run through the use of the DMD and get things moving. Starting with scrolling text – download the demonstration sketch from here. All the code in the sketch outside of void loop() is necessary. Replace the text within the quotes with what you would like to scroll across the display, and enter the number of characters (including spaces) in the next parameter. Finally, if you have more than one display change the 1 to your number of displays in #define DISPLAYS_ACROSS 1.

Here is a quick video of our example sketch:

Now for some more static display functions – starting with clearing the display. You can use

to turn off all the pixels, or

to turn on all the pixels.

Note: turning on more pixels at once increases the current draw. Always keep this in mind and measure with an ammeter if unsure. 

Next some text. First you need to choose the font, at the time of writing there were two to choose from. Use

for a smaller font or

for a larger font. To position a single character on the DMD, use:

which will display the character ‘x’ at location x,y (in pixels – starting from zero). For example, using

results with:

Note if you have the pixels on ‘behind’ the character, the unused pixels in the character are not ‘transparent’. For example:

However if you change the last parameter to GRAPHICS_NOR, the unused pixels will become ‘transparent’. For example:

You can also use the parameter GRAPHICS_OR to overlay a character on the display. This is done with the blinking colon in the example sketch provided with the library.

Next, to draw a string (group of characters). This is simple, just select your font type and then use (for example):

Again, the 5 is a parameter for the length of the string to display. This results in the following:

Next up we look at the graphic commands. To control an individual pixel, use

And changing the 1 to a 0 turns off the pixel. To draw a circle with the centre at x,y and a radius r, use

To draw a line from x1, y2 to x2, y2, use:

To draw a rectangle from x1, y2 to x2, y, use:

And to draw a filled rectangle use:

Now let’s put those functions to work. You can download the demonstration sketch from here, and watch the following results:

Update – the DMD is also available in other colours, such as white:

So there you have it, an inexpensive and easy to use display board with all sorts of applications. Although the demonstrations contained within this article were rather simple, you now have the knowledge to apply your imagination to the DMD and display what you like. For more information, check out the entire DMD range at Tronixlabs. And if you enjoyed this article, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a fourth printing!) “Arduino Workshop”.

visit tronixlabs.com

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website.

Posted in arduino, dmd, freetronics, LED matrix, lesson, microcontrollers, product review, review, tronixlabs, tutorialComments (0)

December 2011 Competition Results

Competition over!

Posted in competition

December 2011 Competition

Competition over.

Posted in competition

Review – Freetronics Module Family

Hello

In this article we examine a new range of eleven electronic modules from Freetronics. When experimenting with electronics or working on a prototype of a design, the use of electronic components in module form can make construction easier, and also reduce the time between thoughts and actually making something 🙂 So let’s have a look at each module in more detail…

PoE Power Regulator – 28V

This is a tiny switchmode voltage regulator with two uses – the first being regulation of higher voltage up to 28V carried via an Ethernet cable to a Freetronics Ethernet shield or EtherTen to power the board itself. The PCB is designed to drop into the shield or EtherTen as such:

… and converts the incoming voltage down to 7V which can be regulated by the EtherTen’s inbuilt regulator. The second use of this board is a very handy power supply for breadboarding or other experimentation. By bridging the solder pads on the rear of the board, the output is set to 5V DC, as such:

Note the addition of the header pins, which make insertion into a breadboard very easy – so now you have a 5V 1A DC power supply. For more information visit the product page.

N-MOSFET Driver/Output Module

This module contains an On Semi NTD5867NL MOSFET which allows the switching of a high current and voltage line – 60V at up to 20A – with a simple Arduino or other MCU digital output pin. The package is small and also contains enlarged holes for direct connection of high-current capability wire:

The onboard circuitry includes a pull-down resistor to ensure the MOSFET is off by default. For more information see the product page.

Logic Level Converter Module

This is a very simple and inexpensive method to interface 3.3V sensors to 5V microcontrollers in either direction.The module contains four independent channels, as shown in the image below:

However you can interface any low or higher voltage, as long as you connect the low and high voltages to the correct sides (marked on the PCB’s silk screen). For more information please visit the product page.

RGBLED Module

Surprisingly this module contains a RGB LED module (red, green and blue LEDs) which is controlled by a WS2801 constant-current LED driver IC. This module is only uses two digital output pins, and can be daisy-chained to control many modules with the same two pins. The connections are shown clearly on the module:

The WS2801 controller IC is on the rear:

There are several ways to control the LEDs. One way is using the sketch from the product home page, which results with the following demonstration output:

Or there is a unique Arduino WS2801 library available for download from here. Using the strandtest example included with the library results with the following:

During operation the module used less than 24 mA of current and therefore can happily run from a standard Arduino-type board without any issues. For more information please visit the product page.

TEMP Temperature Sensor Module

This module allows the simple measurement of temperature using the popular DS18B20 temperature sensor. You can measure temperatures between -55° and 125°C with an accuracy of +/- 0.5°C. Furthermore as the sensor uses the 1-wire bus, you can daisy-chain more than one sensor for multiple readings in the one application. The board is simple to use, and also contains a power-on LED:

Using the demonstation Arduino sketch from the product page results in the following output via the serial monitor:

Using this module is preferable to the popular Analog Devices TMP36, as it has an analogue output which can be interfered with, and requires an analogue input pin for each sensor, whereas this module has a digital output and as mentioned previously can be daisy-chained. For more information please visit the product page.

Humidity and Temperature Sensor Module

For the weather-measuring folk here is a module with temperatures and humidity. Using the popular DHT22 sensor module the temperature range is -4°C to +125°C with an accuracy of +/- 0.5°C, and humidity with an accuracy of between two and five percent. Only one digital input pin is required, and the board is clearly labelled:

There is also a blue power-on LED towards the top-right of the sensor. Using the module is quite simple with Arduino – download and use the example sketch included in the sensor library you can download from here. For the demonstration connect the centre data pin to Arduino digital two. Here is an example of the demonstration output:

Although the update speed is not lightning-fast, this should not be an issue unless you’re measuring real-time external temperature of your jet or rocket. For more information please see the product page.

Shift Register/Expansion Module

This board uses a 74HC595 serial-in parallel-out shift register which enables you to control eight digital outputs with only three digital pins, for example:

You can daisy-chain these modules to increase the number of digital outputs in multiples of eight, all while only using the three digital output pins on your Arduino or other microcontroller. For more information about how to use shift registers with Arduino systems, read our detailed tutorial. Otherwise for more information about the module please visit the product page.

Hall Effect Magnetic and Proximity Sensor Module

This module contains a sensor which changes output from HIGH to LOW when a magnetic presence is detected, for example a magnet. The board also has an LED which indicates the presence of the magnet to aid in troubleshooting:

Using this module and a small magnet would be an easy way to create a speedometer for a bicycle, the module is mounted to the fork, and the magnet on the rim of the front wheel. For more ideas consider the speedometer project in this tutorial. Otherwise for more information about this module please visit the product page.

Microphone Sound Input Module

This module performs two functions – it can return the sound pressure level (SPL) or the amplified audio waveform from the electret microphone. The LED (labelled “DETECT”) on the board visually displays an approximation of the SPL – for example:

… however the value can be returned by using an analogue input pin on an Arduino (etc). to return a numerical value. To do this connect the SPL pin to the analogue input. The MIC pin is used to take the amplified output from the microphone, to be processed by an ADC or used in an audio project. For more information please visit the product page.

Light Sensor Module

This module uses the TEMT6000 light sensor which returns more consistent values than can be possible using a light-dependent resistor. It outputs a voltage from the OUT pin that is proportional to the light level. The module is very small:

Use is simple – just measure the value returned from the OUT pin using an analogue input pin on your Arduino (etc). For more information please visit the product page. And finally, the:

Sound and Buzzer Module

This module contains a piezoelectric element that can be used to generate sounds (in the form of musical buzzes…):

Driving the buzzer is simple, just use pulse-width modulation. Arduino users can find a good demonstration of this here. Furthermore, as piezoelectric elements can also generate a small electrical current when vibrated, they can be used as “shock” detectors by measuring the voltage across the terminals of the element. The procedure to do this is also explained clearly here.

Now for a final demonstration – we use the light sensor to demonstrate making some noise with the buzzer module:

One final note I would like to make is that the design and construction quality of each module is first rate. The PCBs are strong, and the silk-screening is useful and descriptive. If you find the need for some or all of the functions made available in this range, you could do worse by not considering a Freetronics unit. Finally, although this has only been a short introduction to the modules for now, we will make use of them in later projects.

The modules are available directly from Freetronics or through their network of resellers.

Disclaimer – Modules reviewed in this article are a promotional consideration made available by Freetronics

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, freetronics, learning electronics, microcontrollers, modules, reviewComments (0)

October 2011 Competition Results

Competition over.

Posted in competition

October 2011 Competition

Competition over!

Posted in competition

August 2011 Competition Results

Competition over.

Posted in competitionComments (0)

August 2011 Competition

Competition over!

Posted in competition

Tutorial: Arduino timing methods with millis()

This is chapter thirty-seven of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – in what feels like an endless series of articles on the Arduino universe. The first chapter is here, the complete series is detailed here. Any files from tutorials will be found here.

[Updated 20/01/2013]

In this article we introduce the millis(); function and put it to use to create various timing examples.

Millis? Nothing to do with lip-syncers… hopefully you recognised milli as being the numerical prefix for one-thousandths; that is multiplying a unit of measure by 0.001 (or ten to the power of negative 3). Interestingly our Arduino systems will count the number of milliseconds (thousands of a second) from the start of a sketch running until the count reaches the maximum number capable of being stored in the variable type unsigned long (a 32-bit [four byte] integer – that ranges from zero to (2^32)-1.

(2^32)-1, or 4294967295 milliseconds converts to 49.71027-odd days. The counter resets when the Arduino is reset, it reaches the maximum value or a new sketch is uploaded. To get the value of the counter at a particular juncture, just call the function – for example:

Where start is an unsigned long variable. Here is a very simple example to show you millis() in action:

The sketch stores the current millis count in start, then waits one second, then stores the value of millis again in finished. Finally it calculates the elapsed time of the delay.  In the following screen dump of the serial monitor, you can see that the duration was not always exactly 1000 milliseconds:

To put it simply, the millis function makes use of an internal counter within the ATmega microcontroller at the heart of your Arduino. This counter increments every clock cycle – which happens (in standard Arduino and compatibles) at a clock speed of 16 Mhz. This speed is controlled by the crystal on the Arduino board (the silver thing with T16.000 stamped on it):

Crystal accuracy can vary depending on external temperature, and the tolerance of the crystal itself. This in turn will affect the accuracy of your millis result. Anecdotal experience has reported the drift in timing accuracy can be around three or four seconds per twenty-four hour period. If you are using a board or your own version that is using a ceramic resonator instead of a crystal, note that they are not as accurate and will introduce the possibility of higher drift levels. If you need a much higher level of timing accuracy, consider specific timer ICs such as the Maxim DS3232.

Now we can make use of the millis  for various timing functions. As demonstrated in the previous example sketch, we can calculate elapsed time. To take this idea forward, let’s make a simple stopwatch. Doing so can be as simple or as complex as necessary, but for this case we will veer towards simple. On the hardware perspective, we will have two buttons – Start and Stop – with the 10k ohm pull-down resistors connected to digital pins 2 and 3 respectively.

When the user presses start the sketch will note the value for millis – then after stop is pressed, the sketch will again note the value for millis, calculate and display the elapsed time. The user can then press start to repeat the process, or stop for updated data. Here is the sketch:

The calls to delay() are used to debounce the switches – these are optional and their use will depend on your hardware. Below is an example of the sketch’s serial monitor output – the stopwatch has started, and then button two pressed six times across periods of time:

If you had a sensor at the start and end of a fixed distance, speed could be calculated: speed = distance ÷ time.

You can also make a speedometer for a wheeled form of motion, for example a bicycle. At the present time I do not have a bicycle to mess about with, however we can describe the process to do so – it is quite simple. (Disclaimer – do so at your own risk etc.)  First of all, let’s review the necessary maths. You will need to know the circumference of the wheel. Hardware – you will need a sensor. For example – a reed switch and magnet. Consider the reed switch to be a normally-open button, and connect as usual with a 10k ohm pull-down resistor. Others may use a hall-effect sensor – each to their own). Remember from maths class:

(image licence)

To calculate the circumference – use the formula:

circumference = 2πr 

where r is the radius of the circle. Now that you have the wheel circumference, this value can be considered as our ‘fixed distance’, and therefore the speed can be calculated by measuring the elapsed time between of a full rotation.

Your sensor – once fitted – should act in the same method as a normally-open button that is pushed every rotation. Our sketch will measure the time elapsed between every pulse from the sensor. To do this, our example will have the sensor output connected to digital pin 2 – as it will trigger an interrupt to calculate the speed. (Interrupts? See chapter three). The sketch will otherwise be displaying the speed on a normal I2C-interface LCD module. The I2C interface is suggested as this requires only 4 wires from the Arduino board to the LCD – the less wires the better.

Here is the sketch for your perusal:

There isn’t that much going on – every time the wheel completes one revolution the signal from the sensor will go from low to high – triggering an interrupt which calls the function speedCalc(). This takes a reading of millis() and then calculates the difference between the current reading and the previous reading – this value becomes the time to cover the distance (which is the circumference of the wheel relative to the sensor – stored in

and is measured in metres). It finally calculates the speed in km/h and MPH. Between interrupts the sketch displays the updated speed data on the LCD as well as the raw time value for each revolution for curiosity’s sake. In real life I don’t think anyone would mount an LCD on a bicycle, perhaps an LED display would be more relevant.

In the meanwhile, you can see how this example works in the following short video clip. Instead of a bike wheel and reed switch/magnet combination, I have connected the square-wave output from a function generator to the interrupt pin to simulate the pulses from the sensor, so you can get an idea of how it works:

That just about sums up the use of millis() for the time being. There is also the micros(); function which counts microseconds. So there you have it – another practical function that can allow more problems to be solved via the world of Arduino. As always, now it is up to you and your imagination to find something to control or get up to other shenanigans.

LEDborder

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, education, learning electronics, lesson, microcontrollers, millis, speedometer, stopwatch, timing, tutorialComments (18)

Tutorial: Arduino and the SPI bus part II

This is chapter thirty-six of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – A seemingly endless series of articles on the Arduino universe. The first chapter is here, the complete series is detailed here

[Updated 10/01/2013]

This is the second of several chapters in which we are investigating the SPI data bus, and how we can control devices using it with our Arduino systems. If you have not done so already, please read part one of the SPI articles. Again we will learn the necessary theory, and then apply it by controlling a variety of devices. As always things will be kept as simple as possible.

First on our list today is the use of multiple SPI devices on the single bus. We briefly touched on this in part one, by showing how multiple devices are wired, for example:

Notice how the slave devices share the clock, MOSI and MISO lines – however they both have their own chip select line back to the master device. At this point a limitation of the SPI bus becomes prevalent – for each slave device we need another digital pin to control chip select for that device. If you were looking to control many devices, it would be better to consider finding I2C solutions to the problem. To implement multiple devices is very easy. Consider the example 34.1 from part one – we controlled a digital rheostat. Now we will repeat the example, but instead control four instead of one. For reference, here is the pinout diagram:

Doing so may sound complex, but it is not. We connect the SCK, MOSI and  MISO pins together, then to Arduino pins D13, D11, D12 respectively. Each CS pin is wired to a separate Arduino digital pin. In our example rheostats 1 to 4 connect to D10 through to D7 respectively. To show the resistance is changing on each rheostat, there is an LED between pin 5 and GND and a 470 ohm resistor between 5V and pin 6. Next, here is the sketch:

Although the example sketch may be longer than necessary, it is quite simple. We have four SPI devices each controlling one LED, so to keep things easy to track we have defined led1~led4 to match the chip select digital out pins used for each SPI device. Then see the first four lines in void setup(); these pins are set to output in order to function as required. Next – this is very important – we set the pins’ state to HIGH. You must do this to every chip select line! Otherwise more than one CS pins may be initially low in some instances and cause the first data sent from MOSI to travel along to two or more SPI devices. With LEDs this may not be an issue, but for motor controllers … well it could be.

The other point of interest is the function

We pass the value for the SPI device we want to control, and the value to send to the device. The value for l is the chip select value for the SPI device to control, and ranges from 10~7 – or as defined earlier, led1~4. The rest of the sketch is involved in controlling the LED’s brightness by varying the resistance of the rheostats. Now to see example 36.1 in action via the following video clip:


(If you are wondering what I have done to the Freetronics board in that video, it was to add a DS1307 real-time clock IC in the prototyping section).

Next on the agenda is a digital-to-analogue converter, to be referred to using the acronym DAC. What is a DAC? In simple terms, it accepts a numerical value between zero and a maximum value (digital) and outputs a voltage between the range of zero and a maximum relative to the input value (analogue). One could consider this to be the opposite of the what we use the function analogRead(); for. For our example we will use a Microchip MCP4921 (data sheet.pdf):

(Please note that this is a beginners’ tutorial and is somewhat simplified). This DAC has a 12-bit resolution. This means that it can accept a decimal number between 0 and 4095 – in binary this is 0 to 1111 1111 1111 (see why it is called 12-bit) – and the outpout voltage is divided into 4096 steps. The output voltage for this particular DAC can fall between 0 and just under the supply voltage (5V). So for each increase of 1 in the decimal input value, the DAC will output around 1.221 millivolts.

It is also possible to reduce the size of the voltage output steps by using a lower reference voltage. Then the DAC will consider the reference voltage to be the maximum output with a value of 4095. So (for example) if the reference voltage was 2.5V, each increase of 1 in the decimal input value, the DAC will output around 0.6105 millivolts. The minimum reference voltage possible is 0.8V, which offers a step of 200 microvolts (uV).

The output of a DAC can be used for many things, such as a function generator or the playback of audio recorded in a digital form. For now we will examine how to use the hardware, and monitoring output on an oscilloscope. First we need the pinouts:

By now these sorts of diagrams shouldn’t present any problems. In this example, we keep pin 5 permanently set to GND; pin 6 is where you feed in the reference voltage – we will set this to +5V; AVss is GND; and Vouta is the output signal pin – where the magic comes from 🙂 The next thing to investigate is the MCP4921’s write command register:

Bits 0 to 11 are the 12 bits of the output value; bit 15 is an output selector (unused on the MPC4921); bit 14 controls the input buffer; bit 13 controls an inbuilt output amplifier; and bit 12 can shutdown the DAC. Unlike previous devices, the input data is spread across two bytes (or a word of data). Therefore a small amount of work needs to be done to format the data ready for the DAC. Let’s explain this through looking at the sketch for example 36.2 that follows. The purpose of the sketch is to go through all possible DAC values, from 0 to 4095, then back to 0 and so on.

First. note the variable outputvalue – it is a word, a 16-bit unsigned variable. This is perfect as we will be sending a word of data to the DAC. We put the increasing/decreasing value for a into outputValue. However as we can only send bytes of data at a time down the SPI bus, we will use the function highbyte() to separate the high side of the word (bits 15~8) into a byte variable called data.

We then use the bitwise AND and OR operators to set the parameter bits 15~12. Then this byte is sent to the SPI bus. Finally, the function lowbyte() is used to send the low side of the word (bits 7~0) into data and thence down the SPI bus as well.

Now for our demonstration sketch:

And a quick look at the DAC in action via an oscilloscope:

By now we have covered in detail how to send data to a device on the SPI bus. But how do we receive data from a device?

Doing so is quite simple, but some information is required about the particular device. For the rest of this chapter, we will use the Maxim DS3234 “extremely accurate” real-time clock. Please download the data sheet (.pdf) now, as it will be referred to many times.

The DS3234 is not available in through-hole packaging, so we will be using one that comes pre-soldered onto a very convenient breakout board:

It only takes a few moments to solder in some header pins for breadboard use. The battery type is CR1220 (12 x 2.0mm, 3V); if you don’t have a battery you will need to short out the battery holder with some wire otherwise the IC will not work. Readers have reported that the IC doesn’t keep time if the USB and external power are both applied to the Arduino at the same time.

A device will have one or more registers where information is read from and written to. Look at page twelve of the DS3234 data sheet, there are twenty-three registers, each containing eight bits (one byte) of data. Please take note that each register has a read and write address. An example – to retrieve the contents of the register at location 08h (alarm minutes) and place it into the byte data we need to do the following:

Don’t forget to take note of  the function SPI.setBitOrder(MSBFIRST); in your sketch, as this also determines the bit order of the data coming from the device. To write data to a specific address is also quite simple, for example:

Up to this point, we have not concerned ourselves with what is called the SPI data mode. The mode determines how the SPI device interprets the ‘pulses’ of data going in and out of the device. For a well-defined explanation, please read this article. With some devices (and in our forthcoming example) the data mode needs to be defined. So we use:

to set the data mode, within void(setup);. To determine a device’s data mode, as always – consult the data sheet. With our DS3234 example, the mode is mentioned on page 1 under Features List.

Finally, let’s delve a little deeper into SPI via the DS3234. The interesting people at Sparkfun have already written a good demonstration sketch for the DS3234, so let’s have a look at that and deconstruct it a little to see what is going on. You can download the sketch below from here, then change the file extension from .c to .pde.

Don’t let the use of custom functions and loops put you off, they are there to save time. Looking in the function SetTimeDate();, you can see that the data is written to the registers 80h through to 86h (skipping 83h – day of week) in the way as described earlier (set CS low, send out address to write to, send out data, set CS high). You will also notice some bitwise arithmetic going on as well. This is done to convert data between binary-coded decimal and decimal numbers.

Why? Go back to page twelve of the DS3234 data sheet and look at (e.g.) register 00h/80h – seconds. The bits 7~4 are used to represent the ‘tens’ column of the value, and bits 3~0 represent the ‘ones’ column of the value. So some bit shifting is necessary to isolate the digit for each column in order to convert the data to decimal. For other ways to convert between BCD and decimal, see the examples using the Maxim DS1307 in chapter seven.

Finally here is another example of reading the time data from the DS3234:

So there you have it – more about the world of the SPI bus and how to control the devices within.

LEDborder

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, BOB-10160, dac, DS3234, education, learning electronics, lesson, MCP4162, MCP4921, microcontrollers, SPI, tutorial, UncategorizedComments (14)

May 2011 Competition Results

Competition over!

Posted in competitionComments (0)

Tutorial: Arduino and the SPI bus

Learn how to use the SPI data bus with Arduino in chapter thirty-four of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – A seemingly endless tutorial on the Arduino universe. The first chapter is here, the complete series is detailed here

[Updated 10/01/2013]

This is the first of two chapters in which we are going to start investigating the SPI data bus, and how we can control devices using it with our Arduino systems. The SPI bus may seem to be a complex interface to master, however with some brief study of this explanation and practical examples you will soon become a bus master! To do this we will learn the necessary theory, and then apply it by controlling a variety of devices. In this tutorial things will be kept as simple as possible.

But first of all, what is it? And some theory…

SPI is an acronym for “Serial Peripheral Interface”. It is a synchronous serial data bus – data can travel in both directions at the same time, as opposed to (for example) the I2C bus that cannot do so. To allow synchronous data transmission, the SPI bus uses four wires. They are called:

  • MOSI – Master-out, Slave-in. This line carries data from our Arduino to the SPI-controlled device(s);
  • MISO – Master-in, Slave out. This line carries data from the SPI-controlled device(s) back to the Arduino;
  • SS – Slave-select. This line tells the device on the bus we wish to communicate with it. Each SPI device needs a unique SS line back to the Arduino;
  • SCK – Serial clock.

Within these tutorials we consider the Arduino board to be the master and the SPI devices to be slaves. On our Arduino Duemilanove/Uno and compatible boards the pins used are:

  • SS – digital 10. You can use other digital pins, but 10 is generally the default as it is next to the other SPI pins;
  • MOSI – digital 11;
  • MISO – digital 12;
  • SCK – digital 13;

Arduino Mega users – MISO is 50, MOSI is 51, SCK is 52 and SS is usually 53. If you are using an Arduino Leonardo, the SPI pins are on the ICSP header pins. See here for more information. You can control one or more devices with the SPI bus. For example, for one device the wiring would be:

Data travels back and forth along the MOSI and MISO lines between our Arduino and the SPI device. This can only happen when the SS line is set to LOW. In other words, to communicate with a particular SPI device on the bus, we set the SS line to that device to LOW, then communicate with it, then set the line back to HIGH. If we have two or more SPI devices on the bus, the wiring would resemble the following:


Notice how there are two SS lines – we need one for each SPI device on the bus. You can use any free digital output pin on your Arduino as an SS line. Just remember to have all SS lines high except for the line connected to the SPI device you wish to use at the time.

Data is sent to the SPI device in byte form. You should know by now that eight bits make one byte, therefore representing a binary number with a value of between zero and 255. When communicating with our SPI devices, we need to know which way the device deals with the data – MSB or LSB first. MSB (most significant bit) is the left-hand side of the binary number, and LSB (least significant bit) is the right-hand side of the number. That is:

Apart from sending numerical values along the SPI bus, binary numbers can also represent commands. You can represent eight on/off settings using one byte of data, so a device’s parameters can be set by sending a byte of data. These parameters will vary with each device and should be illustrated in the particular device’s data sheet. For example, a digital potentiometer IC with six pots:

sdata

This device requires two bytes of data. The ADDR byte tells the device which of six potentiometers to control (numbered 0 to 5), and the DATA byte is the value for the potentiometer (0~255). We can use integers to represent these two values. For example, to set potentiometer number two to 125, we would send 2 then 125 to the device.

How do we send data to SPI devices in our sketches?

First of all, we need to use the SPI library. It is included with the default Arduino IDE installation, so put the following at the start of your sketch:

Next, in void.setup() declare which pin(s) will be used for SS and set them as OUTPUT. For example,

where ss has previously been declared as an integer of value ten. Now, to activate the SPI bus:

and finally we need to tell the sketch which way to send data, MSB or LSB first by using

or

When it is time to send data down the SPI bus to our device, three things need to happen. First, set the digital pin with SS to low:

Then send the data in bytes, one byte at a time using:

Value can be an integer/byte between zero and 255. Finally, when finished sending data to your device, end the transmission by setting SS high:

Sending data is quite simple. Generally the most difficult part for people is interpreting the device data sheet to understand how commands and data need to be structured for transmission. But with some practice, these small hurdles can be overcome.

Now for some practical examples!

Time to get on the SPI bus and control some devices. By following the examples below, you should gain a practical understanding of how the SPI bus and devices can be used with our Arduino boards.

Example 34.1

Our first example will use a simple yet interesting part – a digital potentiometer (we also used one in the I2C tutorial). This time we have a Microchip MCP4162-series 10k rheostat:


Here is the data sheet.pdf for your perusal. To control it we need to send two bytes of data – the first byte is the control byte, and thankfully for this example it is always zero (as the address for the wiper value is 00h [see table 4-1 of the data sheet]).  The second byte is the the value to set the wiper, which controls the resistance. So to set the wiper we need to do three things in our sketch…

First, set the SS (slave select) line to low:

Then send the two byes of data:

Finally set the SS line back to high:

Easily done. Connection to our Arduino board is very simple – consider the MCP4162 pinout:

Vdd connects to 5V, Vss to GND, CS to digital 10, SCK to digital 13, SDI to digital 11 and SDO to digital 12. Now let’s run through the available values of the MCP4162 in the following sketch:

Now to see the results of the sketch. In the following video clip, a we run up through the resistance range and measure the rheostat value with a multimeter:

Before moving forward, if digital potentiometers are new for you, consider reading this short guide written by Microchip about the differences between mechanical and digital potentiometers.

Example 34.2

In this example, we will use the Analog Devices AD5204 four-channel digital potentiometer (data sheet.pdf). It contains four 10k ohm linear potentiometers, and each potentiometer is adjustable to one of 256 positions. The settings are volatile, which means they are not remembered when the power is turned off. Therefore when power is applied the potentiometers are all pre set to the middle of the scale. Our example is the SOIC-24 surface mount example, however it is also manufactured in DIP format as well.

 

To make life easier it can be soldered onto a SOIC breakout board which converts it to a through-hole package:

ad5204boardss

In this example, we will control the brightness of four LEDs. Wiring is very simple. Pinouts are in the data sheet.pdf.

ex34p2schematic

And the sketch:

The function allOff() and allOn() are used to set the potentiometers to minimum and maximum respectively. We use allOff() at the start of the sketch to turn the LEDs off. This is necessary as on power-up the wipers are generally set half-way. Furthermore we use them in the blinkAll() function to … blink the LEDs. The function setPot() accepts a wiper number (0~3) and value to set that wiper (0~255). Finally the function indFade() does a nice job of fading each LED on and off in order – causing an effect very similar to pulse-width modulation.

Finally, here it is in action:

Example 34.3

In this example, we will use use a four-digit, seven-segment LED display that has an SPI interface. Using such a display considerably reduces the amount of pins required on the micro controller and also negates the use of shift register ICs which helps reduce power consumption and component count. The front of our example:

7segfrss

and the rear:

7segrearss

Thankfully the pins are labelled quite clearly. Please note that the board does not include header pins – they were soldered in after receiving the board. Although this board is documented by Sparkfun there seems to be issues in the operation, so instead we will use a sketch designed by members of the Arduino forum. Not wanting to ignore this nice piece of hardware we will see how it works and use it with the new sketch from the forum.

Again, wiring is quite simple:

  • Board GND to Arduino GND
  • Board VCC to Arduino 5V
  • Board SCK to Arduino D12
  • Board SI to Arduino D11
  • Board CSN to Arduino D10

The sketch is easy to use, you need to replicate all the functions as well as the library calls and variable definitions. To display numbers (or the letters A~F) on the display, call the function

where a is the number to display, b is the base system used (2 for binary, 8 for octal, 10 for usual, and 16 for hexadecimal), and c is for padded zeros (0 =off, 1=on). If you look at the void loop() part of the example sketch, we use all four number systems in the demonstration. If your number is too large for the display, it will show OF for overflow. To control the decimal points, colon and the LED at the top-right the third digit, we can use the following:

After all that, here is the demonstration sketch for your perusal:

And a short video of the demonstration:

So there you have it – hopefully an easy to understand introduction to the world of the SPI bus and how to control the devices within. As always, now it is up to you and your imagination to find something to control or get up to other shenanigans. In the next SPI article we will look at reading and writing data via the SPI bus.

LEDborder

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS usng the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in AD5204, arduino, COM-09767, education, learning electronics, lesson, MCP4162, microcontrollers, SPI, tutorialComments (32)

Discovering Arduino’s internal EEPROM lifespan

How long does the internal EEPROM of an Atmel ATmega328 last for? Let’s find out…

Updated 18/03/2013

Some time ago I published a short tutorial concerning the use of the internal EEPROM  belonging to the Atmel ATmega328 (etc.) microcontroller in our various Arduino boards. Although making use of the EEPROM is certainly useful, it has a theoretical finite lifespan – according to the Atmel data sheet (download .pdf) it is 100,000 write/erase cycles.

One of my twitter followers asked me “is that 100,000 uses per address, or the entire EEPROM?” – a very good question. So in the name of wanton destruction I have devised a simple way to answer the question of EEPROM lifespan. Inspired by the Dangerous Prototypes’ Flash Destroyer, we will write the number 170 (10101010 in binary) to each EEPROM address, then read each EEPROM address to check the stored number. The process is then repeated by writing the number 85 (01010101 in binary) to each address and then checking it again. The two binary numbers were chosen to ensure each bit in an address has an equal number of state changes.

After both of the processes listed above has completed, then the whole lot repeats. The process is halted when an incorrectly stored number is read from the EEPROM – the first failure. At this point the number of cycles, start and end time data are shown on the LCD.

In this example one cycle is 1024 sequential writes then reads. One would consider the entire EEPROM to be unusable after one false read, as it would be almost impossible to keep track of  individual damaged EEPROM addresses. (Then again, a sketch could run a write/read check before attempting to allocate data to the EEPROM…)

If for some reason you would like to run this process yourself, please do not do so using an Arduino Mega, or another board that has a fixed microcontroller. (Unless for some reason you are the paranoid type and need to delete some data permanently). Once again, please note that the purpose of this sketch is to basically destroy your Arduino’s EEPROM. Here is the sketch:

If you are unfamiliar with the time-keeping section, please see part one of my Arduino+I2C tutorial. The LCD used was my quickie LCD shield – more information about that here. Or you could always just send the data to the serial monitor box – however you would need to leave the PC on for a loooooong time… So instead the example sat on top of an AC adaptor (wall wart) behind a couch (sofa)  for a couple of months:

The only catch with running it from AC was the risk of possible power outages. We had one planned outage when our house PV system was installed, so I took a count reading before the mains was turned off, and corrected the sketch before starting it up again after the power cut. Nevertheless, here is a short video – showing the start and the final results of the test:


So there we have it, 1230163 cycles with each cycle writing and reading each individual EEPROM address. If repeating this odd experiment, your result will vary.

Well I hope someone out there found this interesting. Please refrain from sending emails or comments criticising the waste of a microcontroller – this was a one off.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, atmega328, atmel, EEPROM, hardware hacking, lesson, microcontrollers, projects, tutorialComments (5)

May 2011 Competition

Competition over!

Posted in competitionComments (0)

Tutorial: Your Arduino’s inbuilt EEPROM

This is chapter thirty-one of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – A tutorial on the Arduino universe. The first chapter is here, the complete series is detailed here 

[Updated 09/01/2013]

Today we are going to examine the internal EEPROM in our Arduino boards. What is an EEPROM some of you may be saying? An EEPROM is an Electrically Erasable Programmable Read-Only Memory. It is a form of non-volatile memory that can remember things with the power being turned off, or after resetting the Arduino. The beauty of this kind of memory is that we can store data generated within a sketch on a more permanent basis.

Why would you use the internal EEPROM? For situations where data that is unique to a situation needs a more permanent home. For example, storing the unique serial number and manufacturing date of a commercial Arduino-based project – a function of the sketch could display the serial number on an LCD, or the data could be read by uploading a ‘service sketch’. Or you may need to count certain events and not allow the user to reset them – such as an odometer or operation cycle-counter.

What sort of data can be stored? Anything that can be represented as bytes of data. One byte of data is made up of eight bits of data. A bit can be either on (value 1) or off (value 0), and are perfect for representing numbers in binary form. In other words, a binary number can only uses zeros and ones to represent a value. Thus binary is also known as “base-2″, as it can only use two digits.

How can a binary number with only the use of two digits represent a larger number? It uses a lot of ones and zeros. Let’s examine a binary number, say 10101010. As this is a base-2 number, each digit represents 2 to the power of x, from x=0 onwards:

binary2 binary12

See how each digit of the binary number can represent a base-10 number. So the binary number above represents 85 in base-10 – the value 85 is the sum of the base-10 values. Another example – 11111111 in binary equals 255 in base 10.

binary2

Now each digit in that binary number uses one ‘bit’ of memory, and eight bits make a byte. Due to internal limitations of the microcontrollers in our Arduino boards, we can only store 8-bit numbers (one byte) in the EEPROM. This limits the decimal value of the number to fall between zero and 255. It is then up to you to decide how your data can be represented with that number range. Don’t let that put you off – numbers arranged in the correct way can represent almost anything!

There is one limitation to take heed of – the number of times we can read or write to the EEPROM. According to the manufacturer Atmel, the EEPROM is good for 100,000 read/write cycles (see the data sheet). One would suspect this to be a conservative estimate, however you should plan accordingly. *Update* After some experimentation, the life proved to be a lot longer

Now we know our bits and and bytes, how many bytes can be store in our Arduino’s microcontroller? The answer varies depending on the model of microcontroller. For example:

  • Boards with an Atmel ATmega328, such as Arduino Uno, Uno SMD, Lilypad or the Freetronics KitTen/Eleven – 1024 bytes (1 kilobyte)
  • Boards with an Atmel ATmega1280 or 2560, such as the Arduino Mega series – 4096 bytes (4 kilobytes)
  • Boards with an Atmel ATmega168, such as the original Arduino Lilypad, old Nano, Diecimila etc – 512 bytes.

If y0u are unsure have a look at the Arduino hardware index or ask your board supplier.

If you need more EEPROM storage than what is available with your microcontroller, consider using an external I2C EEPROM as described in the Arduino and I2C tutorial part two.

At this point we now understand what sort of data and how much can be stored in our Arduino’s EEPROM. Now it is time to put this into action. As discussed earlier, there is a finite amount of space for our data. In the following examples, we will use a typical Arduino board with the ATmega328 with 1024 bytes of EEPROM storage.

To use the EEPROM, a library is required, so use the following library in your sketches:

The rest is very simple. To store a piece of data, we use the following function:

The parameter a is the position in the EEPROM to store the integer (0~255) of data b. In this example, we have 1024 bytes of memory storage, so the value of a is between 0 and 1023. To retrieve a piece of data is equally as simple, use:

Where z is an integer to store the data from the EEPROM position a. Now to see an example.

This sketch will create random numbers between 0 and 255, store them in the EEPROM, then retrieve and display them on the serial monitor. The variable EEsize is the upper limit of your EEPROM size, so (for example) this would be 1024 for an Arduino Uno, or 4096 for a Mega.

The output from the serial monitor will appear as such:

So there you have it, another useful way to store data with our Arduino systems. Although not the most exciting tutorial, it is certainly a useful.

LEDborder

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, education, EEPROM, lesson, microcontrollers, tutorialComments (33)

Moving Forward with Arduino – Chapter 30 – twitter

Learn how to tweet from your Arduino in chapter thirty of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – A tutorial on the Arduino universe.

[Updated 26/7/2013]

In this article we will learn how to send messages from our Arduino to twitter. For the uninitiated who may be thinking “what is all this twitter nonsense about?”, twitter is a form of microblogging. You can create a message with a maximum length of 140 characters, and broadcast this on the twitter service. For people to receive your messages (or tweets) they also need to be a member of twitter and choose to subscribe to your tweets.

Generally people will use the twitter service using one of three methods: using a web browser on a personal computer or internet device, on a mobile phone, or using a specific application such as TweetDeck on one of the aforementioned devices. For example, here is a typical web browser view:

And here is an example of a twitter application running on an Android OS smartphone:

tweetdeck

So as you can see, it is easy enough to read peoples’ tweets. Therein lies the reason for this article – we can harness twitter as an output device for our Arduino systems. We can broadcast various messages, so systems can be created to monitor specific parameters and report on their status at regular intervals, upon an event occurring, and so on.

In some areas, you can set twitter to send tweets from a certain user to your mobile phone via SMS – however if doing so be careful to confirm possible charges to your mobile phone account. Finally, if you are worried about privacy with regards to your tweets, you can set your account to private and only allow certain people to follow your tweets.

So let’s get started. First of all – you will need a twitter account. If you do not have one, you can sign up for one here. If you already have a twitter account, you can always open more for other uses – such as an Arduino. For example, my twitter account is @tronixstuff, but my demonstration machine twitter account is @tronixstuff2. Then I have set my primary account to follow my machine’s twitter account. Once you have logged into twitter with your machine account, visit this page and get yourself a token by following the Step One link. Save your token somewhere safe, you’ll need to insert it into your Arduino sketch.

Next, you will need some hardware. Apart from your usual Arduino board, you will need an Ethernet shield. However to save space and money I’ll be using the Freetronics EtherTen:

If you are unfamiliar with using Arduino and Ethernet, please review chapter sixteen before continuing forward with this article. From a software perspective, we will need another library for our Arduino IDE. Download and install the twitter library from here. Now, at this point – please run the Webserver example described in chapter sixteen and ensure it is working before moving forward from this point. While you do that, we’ll have a break…

lopburi-0606

Now it is time to send our first tweet. The following sketch is a modification of the demonstration version, in which we have isolated the tweet-sending into a separate function called (strangely enough) tweet();. It is not complex at all:

So after uploading the above sketch, running a network cable from your access point to the Ethernet shield, and powering up the Arduino board – your tweet should appear as such:

Excellent – it works. And I hope yours did as well. If it did not, open the serial monitor box to get some feedback from the sketch. From experimentation the most amount of errors are caused by incorrect IP and trying to send multiple tweets too quickly. If you get excited and try to run the sketch again by hitting reset, twitter will reply back with an error – it does not allow duplicate tweets to be sent (over a short period of time). Twitter will reply to your tweet with a code which describes the result of your tweet. This code is stored in an integer variable using the function:

For example, 200 means the tweet was sent successfully, and 403 means you have attempted a duplicate tweet. However you can omit the code-checking if you are not fussed about your tweet’s status.

Although it was fun tweeting Hello world, let’s create an example that reacts to various events and tweets about them. To simulate some events I have connected four buttons to digital inputs (using the button board from chapter twelve). Pressing a button sends of the matching message. However you can use any form of digital output or decision-making in your sketch. For now, here is the example sketch:

And here is a screen shot of the results after pressing buttons one, four, two then three:

So there you have it, another useful way to send information from your Arduino to the outside world. Stay tuned for upcoming Arduino tutorials by subscribing to the blog, RSS feed (top-right), twitter or joining our Google Group. Big thanks to @neocat for their work with the twitter  Arduino libraries.

LEDborder

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, cellular, ethernet, learning electronics, microcontrollers, tutorial, twitterComments (2)

February 2011 Competition Results

Competition over!

Posted in arduino, competitionComments (0)

February 2011 Competition

Competition is over

🙂

Posted in arduino, competition

Kit review: Freetronics KitTen Arduino-compatible board

Hello everyone

Within this article we are going to examine another new kit available from Freetronics, a company formed to provide many interesting Arduino-based products after the publication of the book “Practical Arduino” by Jonathan Oxer and Hugh Blemings – which in itself is a good read, there are many interesting projects to make and learn from.

Today we examine their answer to “is there a kit version of the TwentyTen Arduino Duemilanove-compatible board?” – by assembling their KitTen. Some people may be wondering why one would want to build a KitTen instead of an assembled unit. Personally I could think of the following reasons:

  • It’s fun to make something and see it work;
  • You can save over Au$10;
  • There are a lot more smoothing capacitors in the KitTen design than normal boards;
  • There is a dedicated 3.3V 100 milliamp power regulator (twice the current of the usual board’s 50mA supply)  – ideal for running thirsty shields that need a native 3.3V;
  • The board is for a project that needs to use a modified version of the TwentyTen/Duemilanove;
  • You want a board with a native serial instead of USB interface;
  • All that lovely prototyping area above the microcontroller;
  • The power light and LED for D13 are always visible due to their location on the edge of the PCB;
  • You could solder in your microcontroller to avoid theft – great for school and public use (Yes, this has happened)…

And so on. Moving forward, opening the KitTen package reveals the following:

contents1ss

Once again with a Freetronics kit, all instructions are included in colour, as well as the circuit schematic and another sheet explaining how the KitTen will work with Arduino systems and the specifications. The PCB is solder-masked and silk-screened with a very informative layout:

pcbss1

The rest of the included components shipped in an anti-static bag, including labelled resistors and an IC socket for the microcontroller:

contents2ss

By following the included detailed instructions, everything went well. The layout on the PCB is detailed with all component values, which makes life easier. Starting with the low-profile components:

solder1ss

… followed by higher-profile components such as the IC socket and capacitors:

solder2ss

… and finally the shield sockets. Instead of trying to balance them, it is a lot quicker to place the sockets on an existing Arduino shield, turn it over, drop the KitTen on top then solder the pins in:

solder3ss

Then finally we are finished:

finishedss1

There are a couple of things to watch out for when using your KitTen. The first is to make sure you have the power-select jumper fitted correctly:

powerselectjumperss

Place it on the left pins (as above) to power your KitTen from the FTDI cable; place the jumper on the right pins to power from the DC socket. You should use a power supply of between 9 to 12 volts DC at one amp. The second item to take care with is the blue power LED. The supplied model was so bright it was like staring into the sun. You may wish to test your own one and possibly replace it for a duller version, or use some fine sandpaper to reduce the brightness of the included LED. To upload sketches to your KitTen you will need a 5 volt FTDI cable. As mentioned above, this can also power your board as well.

Overall, this is an excellent kit, and considering the price of doing it yourself – good value as well. To get your hands on this product– visit Freetronics’ website, or your local reseller.

Remember, if you have any questions about these modules please contact Freetronics via their website.

Higher resolution images available on flickr.

[Note – the kit assembled in this article was received from Freetronics for review purposes]

Posted in arduino, kit reviewComments (0)

Kit review: Freetronics 16×2 LCD Arduino Shield

Hello everyone

This kit has now been discontinued, however Freetronics now have a great LCD+Keypad Shield.

Today we examine their latest kit, the “16×2 LCD Arduino Shield“. This is a very easy to construct, yet useful tool for those experimenting, prototyping and generally making things with their Arduino-based systems.  The purpose of the shield is to offer easy access to a 16 x 2 character LCD module, and also the use of five buttons – connected to an analog input using the resistor ladder method. The kit comes packaged very well, and includes not only detailed printed instructions in colour, but also the full circuit schematic:

contentsss

It is nice to see such a high level of documentation, even though most people may not need it – there is generally someone who does. Sparkfun – get the hint. All the parts are included, and for the first time in my life the resistors were labelled as well:

partsss1

So being Mr Pedantic I followed the instructions, and happily had the components in without any troubles. The next step was the Arduino shield pins – the best way to solder these is to insert into your Arduino board, drop the shield on top then solder away as such:

shieldpinsss

And finally, bolting on the LCD whilst keeping the header pins for the LCD in line. Some people may find the bolt closest to D0 interferes with the shield pin, so you can insert the bolt upside down as I have. Remember to not solder the LCD pins until you are happy it is seated in correctly:

lcdtopcbss

Once you are satisfied the pins are lined up and sitting in their required position – solder them in, tighten your nuts and that’s it:

finishedss

The contrast of the LCD in real life is better than shown in the photo above – photographing them is a little difficult for me. However once assembled, using the shield is quite easy. If your LCD doesn’t seem to be working after your first sketch, adjust the contrast using the potentiometer. The LCD is a standard HD44780-interface model, and wired in to use a 4-bit parallel data interface. If using these types of LCD is new to you, perhaps visit this article then return. Our shield uses the pins: A0 and D4~D9.

One uses the standard Arduino liquidCrystal library with this LCD, and the function parameters to use are as follows:

The buttons are read using analog pin A0. Use the following sketch to find the values returned by the analogRead function:

and a quick video of this in action:

Now that we know the values returned for each button, we can take advantage of them to create, for example, a type of menu system – or some sort of controller. In the second example, we have used a modified TwentyTen with a DS1307 real-time clock IC to make a digital clock. The buttons on the LCD shield are utilised to create a user-friendly menu to set the clock time.

You can download the demonstration sketch from here.

In general this is an excellent kit, and considering the price of doing it yourself – good value as well. To get your hands on this product in kit or assembled form – visit Freetronics’ website, or your local reseller.

Remember, if you have any questions about these modules please contact Freetronics via their website. Higher resolution images available on flickr.

[Note – the kit assembled in this article was received from Freetronics for review purposes]

Posted in arduino, kit review, LCDComments (6)

Tutorial: Arduino and the DS touch screen

Use inexpensive touch-screens with Arduino in chapter twenty-three of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – A tutorial on the Arduino universe.  The first chapter is here, the complete series is detailed here.

[Updated 19/01/2013]

Today we are going to spend some time with a touch screen very similar to the ones found in a Nintendo DS gaming unit. In doing so, we can take advantage of a more interesting and somewhat futuristic way of gathering user input. Please note that in order to use the screen without going completely insane, you will need the matching breakout board, as shown in the following image:

screenbbss

The flimsy flexible PCB runner is inserted into the plastic socket on the breakout board – be careful not to crease the PCB nor damage it as it can be rather easy to do so. (The screen can be easy to break as well…) However don’t let that put you off. You will most likely want to solder in some header pins for breadboard use, or sockets to insert wires. For this article it is being used with pins for a breadboard.

Before we start to use the screen, let’s have a quick investigation into how they actually work. Instead of me trying to paraphrase something else, there is a very good explanation in the manufacturer’s data sheet. So please read the data sheet then return. Theoretically we can consider the X and Y axes to be two potentiometers (variable resistors) that can be read with the analogRead() function. So all we need to do is use two analog inputs, one to read the X-axis value and one for the Y-axis value.

However, as always, life isn’t that simple. Although there are only four wires to the screen, the wires’ purpose alters depending on whether we are measuring the X- or Y-axis. Which sounds complex but is not. Using the following example, we can see how it all works.

Example 23.1

In this example, we will read the X- and Y-axis values returned from the touch screen and display them on an LCD module. (Or you could easily send the values to the serial monitor window instead). From a hardware perspective, you will need:

  • Arduino Uno or 100% compatible board
  • DS touch screen and breakout board ready for use
  • Solderless breadboard and some jumper wires
  • Arduino-ready LCD setup. If you are unsure about using LCDs, please revisit chapter 24 of my tutorials.

Connection of the touch screen to the Arduino board is simple, Arduino analog (yes, analog – more on this later) pins A0 to Y1, A1 to X2, A2 to Y2 and A3 to X1 – as below:

exam23p1linkss

Mounting the rest for demonstration purposes is also a simple job. Hopefully by now you have a test LCD module for easy mounting 🙂

exam23p1ss

I have mounted  the touch screen onto the breadboard with some spare header pins, they hold it in nicely for testing purposes. Also notice that the touch screen has been flipped over, the sensitive side is now facing up. Furthermore, don’t forget to remove the protective plastic coating from the screen before use.

From a software (sketch) perspective we have to do three things – read the X-axis value, the Y-axis value, then display them on the LCD. As we (should) know from the data sheet, to read the X-axis value, we need to set X1 as 5V, X2 as 0V (that is, GND) and read the value from Y2. As described above, we use the analog pins to do this. (You can use analog pins as input/output lines in a similar method to digital pins – more information here. Pin numbering continues from 13, so analog 0 is considered to be pin 14, and so on). In our sketch (below) we have created a function to do this and then return the X-axis value.

The Y-axis reading is generated in the same method, and is quite self-explanatory. The delay in each function is necessary to allow time for the analog I/O pins to adjust to their new roles as inputs or outputs or analog to digital converters. Here is our sketch:

Next, let’s have a look at this example in action. The numbers on the LCD may be not what you expected…

The accuracy of the screen is not all that great – however first take into account the price of the hardware before being too critical. Note that there are values returned even when the screen is not being pressed, we could perhaps call these “idle values”. Later on you will learn tell your sketch to ignore these values if waiting for user input, as they will note that nothing has been pressed. Furthermore, the extremities of the screen will return odd values, so remember to take this into account when designing bezels or mounting hardware for your screen.

Each touch screen will have different values for each X and Y position, and that is why most consumer hardware with touch screens has calibration functions to improve accuracy. We can now use the X and Y values in sketches to determine which part of the screen is being touched, and act on that touch.

In order to program our sketches to understand which part of the screen is being touched, it will help to create a “map” of the possible values available. You can determine the values using the sketch from example 23.1, then use the returned values as a reference for designing the layout of your touch interface. For example, the following is a map of my touch screen:

rangess

Example 23.2

For the next example, I would like to have four “zones” on my touch screen, to use as virtual buttons for various things. The first thing to do is draw a numerical “map” of my touch screen, in order to know the minimum and maximum values for both axes for each zone on the screen:

zonallayoutss

At this point in the article I must admit to breaking the screen. Upon receiving the new one I remeasured the X and Y points for this example and followed the  process for defining the numerical boundaries for each zone is completed by finding average mid-points along the axes and allowing some tolerance for zone boundaries.

Now that the values are known, it is a simple matter of using mathematical comparison and Boolean operators (such as >, <, &&, etc)  in a sketch to determine which zone a touch falls into, and to act accordingly. So for this example, we will monitor the screen and display on the LCD screen which area has been pressed. The hardware is identical to example 23.1, and our touch screen map will be the one above. So now we just have to create the sketch.

After reading the values of the touch screen and storing them into variables x and y, a long if…then…else if loop occurs to determine the location of the touch. Upon determining the zone, the sketch calls a function to display the zone type on the LCD. Or if the screen is returning the idle values, the display is cleared. So have a look for yourself with the example sketch:

And see it in operation:

So there you have it, I hope you enjoyed reading this as much as I did writing it. Now you should have the ability to use a touch screen in many situations – you just need to decide how to work with the resulting values from the screen and go from there.

LEDborder

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, BOB-09170, education, hardware hacking, LCD-08977, lesson, microcontrollers, nintendo ds, touch screen, tutorialComments (14)

Tutorial: Arduino and the AREF pin

Learn about the Arduino’s AREF pin and how to use it in this detailed tutorial.

[Updated 09/01/2013]

Today we are going to spend some time with the AREF pin – what it is, how it works and why you may want to use it. First of all, here it is on our boards:

[Please read the entire article before working with your hardware]

In chapter one of this series we used the analogRead() function to measure a voltage that fell between zero and five volts DC. In doing so, we used one of the six analog input pins. Each of these are connected to ADC (analog to digital conversion) pins in the Arduino’s microcontroller. And the analogRead() function returned a value that fell between 0 and 1023, relative to the input voltage.

But why is the result a value between 0~1023? This is due to the resolution of the ADC. The resolution (for this article) is the degree to which something can be represented numerically. The higher the resolution, the greater accuracy with which something can be represented. We call the 5V our reference voltage.

We measure resolution in the terms of the number of bits of resolution. For example, a 1-bit resolution would only allow two (two to the power of one) values – zero and one. A 2-bit resolution would allow four (two to the power of two) values – zero, one, two and three. If we tried to measure  a five volt range with a two-bit resolution, and the measured voltage was four volts, our ADC would return a value of 3 – as four volts falls between 3.75 and 5V. It is easier to imagine this with the following image:

twobit1

So with our example ADC with 2-bit resolution, it can only represent the voltage with four possible resulting values. If the input voltage falls between 0 and 1.25, the ADC returns 0; if the voltage falls between 1.25 and 2.5, the ADC returns a value of 1. And so on.

With our Arduino’s ADC range of 0~1023 – we have 1024 possible values – or 2 to the power of 10. So our Arduinos have an ADC with a 10-bit resolution. Not too shabby at all. If you divide 5 (volts) by 1024, the quotient is 0.00488 – so each step of the ADC represents 4.88 millivolts.

However – not all Arduino boards are created equally. Your default reference voltage of 5V is for Arduino Duemilanoves, Unos, Megas, Freetronics Elevens and others that have an MCU that is designed to run from 5V. If your Arduino board is designed for 3.3V, such as an Arduino Pro Mini-3.3 – your default reference voltage is 3.3V. So as always, check your board’s data sheet.

Note – if you’re powering your 5V board from USB, the default reference voltage will be a little less – check with a multimeter by measuring the potential across the 5V pin and GND. Then use the reading as your reference voltage.

What if we want to measure voltages between 0 and 2, or 0 and 4.6? How would the ADC know what is 100% of our voltage range?

And therein lies the reason for the AREF pin! AREF means Analogue REFerence. It allows us to feed the Arduino a reference voltage from an external power supply. For example, if we want to measure voltages with a maximum range of 3.3V, we would feed a nice smooth 3.3V into the AREF pin – perhaps from a voltage regulator IC. Then the each step of the ADC would represent 3.22 millivolts.

Interestingly enough, our Arduino boards already have some internal reference voltages to make use of. Boards with an ATmega328 microcontroller also have a 1.1V internal reference voltage. If you have a Mega (!), you also have available reference voltages of 1.1 and 2.56V. At the time of writing the lowest workable reference voltage would be 1.1V.

So how do we tell our Arduinos to use AREF? Simple. Use the function analogReference(type); in the following ways:

For Duemilanove and compatibles with ATmega328 microcontrollers:

  • analogReference(INTERNAL); – selects the internal 1.1V reference voltage
  • analogReference(EXTERNAL); – selects the voltage on the AREF pin (that must be between zero and five volts DC)
  • And to return to the internal 5V reference voltage – use analogReference(DEFAULT);

If you have a Mega:

  • analogReference(INTERNAL1V1); – selects the internal 1.1V reference voltage
  • analogReference(INTERNAL2V56); – selects the internal 2.56V reference voltage
  • analogReference(EXTERNAL); – selects the voltage on the AREF pin (that must be between zero and five volts DC)
  • And to return to the internal 5V reference voltage – use analogReference(DEFAULT)

Note you must call analogReference() before using analogRead(); otherwise you will short the internal reference voltage to the AREF pin – possibly damaging your board. If unsure about your particular board, ask the supplier or perhaps in our Google Group.

Now that we understand the Arduino functions, let’s look at some ways to make a reference voltage. The most inexpensive method would be using resistors as a voltage divider. For example, to halve a voltage, use two identical resistors as such:

For a thorough explanation on dividing voltage with resistors, please read this article. Try and use resistors with a low tolerance, such as 1%, otherwise your reference voltage may not be accurate enough. However this method is very cheap.

A more accurate method of generating a reference voltage is with a zener diode. Zener diodes are available in various breakdown voltages, and can be used very easily. Here is an example of using a 3.6V zener diode to generate a 3.6V reference voltage:

For more information about zener (and other diodes) please read this article. Finally, you could also use a linear voltage regulator as mentioned earlier. Physically this would be the easiest and most accurate solution, however regulators are not available in such a wide range nor work with such low voltages (i.e. below 5V).

Finally, when developing your sketch with your new AREF voltage for analogRead();, don’t forget to take into account the mathematics of the operation. For example, if you have a reference voltage of 5V, divide it by 1024 to arrive at a value of 4.88 millivolts per analogRead() unit. Or as in the following example, if you have a reference voltage of 1.8V, dividing it by 1024 gives you 1.75 millivolts per analogRead() unit:

So if necessary, you can now reduce your voltage range for analog inputs and measure them effectively.

LEDborder

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, aref, education, lesson, microcontrollers, tutorialComments (44)

Add a real-time clock to the Freetronics Eleven

Let’s add a DS1307 real-time clock to our Freetronics Arduino-compatible board.

Updated 18/03/2013 – this is also perfect for the Freetronics Eleven board.

Now and again I find myself making another kind of clock or timing device using the Arduino system, and each one has been making use of the Maxim DS1307 real-time clock IC. However every time another clock is being worked on, my DS1307 real-time clock shield needs to come out to play. Although in itself it is a nice shield, at the end of the day – the less you have the better. Originally I used a Freetronics TwentyTen board – which has now been superseded by their Eleven board, however they’re both identical for the purposes of this tutorial.

So what to do? As regular readers will know, my preferred board is the Freetronics Eleven, and within this we have a solution to the following problem:

problemss

The Freetronics team have thoughtfully provided a prototyping area in their board – and that will be a perfect home for the real time clock system. Being a cheapskate and a masochist – instead of  following others by using a smaller RTC module I will instead use parts already in stock (except for the battery) and install my own circuit. So, as always – we need a plan. The circuit itself is quite simple, the DS1307 data sheet has a fine example on page thirteen, and here is my interpretation:

schematicss

So the parts required for our clock circuit will be:

  • IC1 – Maxim DS1307 I2C real-time clock IC
  • 8-pin IC socket
  • R1~R3 – 10k ohm 1% metal film resistors
  • X1 – 32.768 kHz crystal
  • B1 – Panasonic CR1220 3v battery with solder pins (Farnell part number 1298944) [data sheet one and two]
  • One header pin (from those 40-way strips)
  • some thin black single-core wire

The CR1220 battery was chosen over the usual CR2032 due to the smaller diameter. According to the DS1307 data sheet, the battery should last around ten years if it has a capacity of 48 mAh. Our CR1220 is 35 mAh – which will do nicely, perhaps seven years or so. That will have to do. Don’t forget to check the voltage of the battery before installation – it should be just over three volts.

Now to get everything arranged in the prototyping area. When doing this it pays to always have the schematic in front of you as well so you can refer to it when necessary. Planning to use protoboard of any size requires a good plan as well. After spending some time considering component placement, the final layout was as follows:

layoutsss

Each square on the grid represents one hole on the board. After you see the images below, everything will make sense. Before soldering away, it will pay to give the prototyping area a quick clean with some PCB cleaner.

Now it is finally time to get soldering. The first items were the battery, crystal and the resistors. Although the battery was designed to be soldered, I am always a little wary when applying heat to them. Two seconds with the hot iron was enough.

When soldering in the crystal (or anything else), try to keep in mind what the leads will be connecting to. For example, the crystal legs will need to connect to pins 1 and 2 of the IC socket. So bend the crystal leads in the direction of the respective IC socket pins. Doing so will make creating solder joins between them much easier:

The resistors were simple enough. Keep the excess clippings to make jumpers with later. Also notice how the right hand leg of R3 was bent around and brought back up to the top row – this is to help make connections with the 5V rail link:

resisleadsss

The next item was the IC socket. Nothing to worry about there, just drop it in and solder away. Don’t forget to bridge the crystal pins to socket pins one and two, and the battery positive pin to IC socket pin three.

Next for the SQW pin. The DS1307 can also output a nice square wave at either 1Hz, 4.096 kHz, 8.192 kHz or 32.768 kHz, with the resulting signal being found on pin 7. It isn’t something really used that often, but you never know. So I soldered in one of these pins, which should make it easy enough to use later on:

Note that if you are using the SQW function, the DS1307 will merrily pulse away once it is set, until the power is cut – the square-wave generator is autonomous to the I2C bus once it has been set. And it remembers (as long as the backup battery is fine). For example, you can upload a sketch to set the SQW to 4.096 kHz, remove power, yank out the ATmega328, power up – and the SQW is still active.

Next we turn the board over, and solder in our jumper wires:

backlinkss

The lead on the top runs from the right-hand side of the pull-up resistors R1~R3 (when facing the top of the board) to the 5V pad. The bottom lead runs from pin four of the IC socket to the GND pad. The negative pin of the battery is also bent over and soldered to the GND pad. Also, connect all the resistors together as shown in the above image (below the TX pin). The next step is turn the board back over and make some more wired connections, the first being pin eight of the IC socket to the resistors and then to the 5V link on the rear:

toplinksss

The next are somewhat longer, they are the leads for the I2C bus. Run a wire from next to IC socket pin six all the way to (and through) the bottom-right hole of the TwentyTen (when facing the top); this will be the SCL line and soldered to analogue 5. Repeat again from IC socket pin five, this is the SDA line (as above) for analogue 4. The joints you have to solder them onto are not that large, however it can be done. Before soldering the wires in, heat up the existing joint to melting point then let it cool again – this makes actually soldering the wire in a lot easier:

i2css

And there we have it. At this stage, don’t plug the board in. Do some quality control: check that the soldered joints are complete; check that solder has bridged where you need it, and not where you don’t; use the continuity function (‘beeper’) of a multimeter to spot-check for shorts, and also follow the new 5V and GND lines to ensure they are connected correctly. And finally, insert the DS1307 IC into the socket.

finishedss

OK – now for some test timing. If you have not worked with the DS1307 IC before, there is a full explanation of how it works within our Arduino tutorials. Here’s a sketch you can use to test the real-time clock. Once you have uploaded that sketch, open the serial monitor box at 9600 bps, and you should have something like this:


Now let’s check the 1 Hz output from the SQW pin:

Recall that you can generate four frequencies with your DS1307, here is an example sketch that does just that:

and here is the result – measured on a freqency counter:

My frequency counter is around twenty-two years old, please be patient with it as the sampling rate is not the best.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, clocks, ds1307, freetronics, hardware hacking, learning electronics, microcontrollers, tutorialComments (4)

Quick Project – Arduino Backlit LCD shield

In this tutorial learn how to make your own backlit-LCD Arduino shield.

Updated 18/03/2013

Let’s see how simple it is to make your own Arduino LCD shield. Sure – you can just buy one, but where’s the fun in that?

Getting Started

Our LCD is a two line, sixteen character backlit LCD. It has a typical HD44780-compatible interface, which makes it very easy to use with Arduino. The other parts required are laid out along with the LCD:3

partsss

We have the LCD, a Freetronics Protoshield Basic, a button, a 0.1 uF capacitor and some header pins. We also need some solid core, thin wire to make jumpers.

Next is the plan – our schematic. Even for the smaller projects, this is a wise step. You can iron out the bugs before soldering. From experience with these backlit LCDs, there are two ways to wire them up. Either with a trimpot so you can adjust the display contrast, or without. With my example screen, the display was only clear with the trimpot turned all the way to one side, however your screen may vary.

Please note that the voltage for LCD backlights can vary, some are 5V, some are 3.3V. Check your data sheet and plan accordingly!

Consider the following schematics:

schembss1

and

If you are making this circuit without the protoshield, the 0.1 uF capacitor is for decoupling, so place it between 5V and GND. It would be wise to test your LCD using the setup on pin 3 as shown in the second schematic. Then you will have a good idea about the display brightness and contrast. This was done with the usual breadboard setup, but not before soldering the pins into the LCD:

lcdpinsss

which allowed the LCD to slot into the breadboard nicely:

breadboardss

The brightness shown in the image above is satisfactory, so I measured the resistance between each of the outside pins of the trimpot and the centre. The resulting resistance between the centre and ground was around 15 ohms, so basically nothing. So for this LCD, there will not be any adjustments – and the full schematic above will be used (with LCD pin 3 going straight to GND).

The sketch to drive this LCD is quite simple, for example this will do:

For more information about using LCD modules with your Arduino, please refer to my series of Arduino tutorials.

The next step is to consider the plan for the shield. Thankfully this is a pretty simple operation, and minimal extra components to worry about. There is a catch with regards to the LCD module itself, it has six large metal tabs that need to be avoided if the LCD is to sit flush on the shield:

tabsss

Kudos to the engineers who had the pinouts printed on the back of the LCD. Thanks!

You can see that one of the tabs has been … removed. Just carefull use a pair of pliers and bend it slowly back and forth. Metal fatigue will take care of the rest. Anyhow, back to the shield. It is a simple task of soldering in some jumper wires to connect LCD pins 4, 6, 11~14 to the Arduino digital pins 4~9:

linksss

Also during this stage the reset button and the 0.1 uF capacitor were soldered in. When fitting the capacitor, leave around 5mm of length above the board, so you can push it over to one side, this is to give the LCD enough clearance. Furthermore, the lead from the 3.3V pad to LCD 15 is curved so as to avoid another metal tab on the rear of the LCD. The underside of the shield is quite simple:

linskrearss

To ensure a good solder joint when working with these shields – it is very important to heat the ring around the hole for two seconds if you need to create a solder bridge, or heat the wire for two seconds before attempting to solder it on. Otherwise you will either get a cold joint; or become frustrated and keep adding solder, at which point it leaks through to the other side and becomes a problem to remove.

Now to solder in the LCD. If you can, try and bend the LCD pins 1, 3, 5 and 16 towards the GND line, this will help when you need to connect them later. However, please be careful, if you position the LCD incorrectly you will have to basically start all over again with a new shield. When trimming the header pins, be sure to put a finger over the end to stop the cutting flying into your face:

lcdinss

Once you have the LCD module soldered in, and the ends trimmed – the final soldering task is to bridge the pins to the necessary points. This is relatively easy, just heat up one side of the junction and coax the solder across to the required spot. Sometimes the gap will be too large, so trim up the excess legs of the capacitor into small jumpers, say 3~4 mm long. You can then solder these in between the pads quite easily:

almostss

Now – the final soldering task. Snap off some header pins, two of six-pin, and two of eight-pin. Insert them into your Arduino or compatible board as such:

pinsinss

Then place your shield on top and solder the header pins to the shield. And we’re finished… well almost. Before you use the shield, use a multimeter or continuity tester to make sure none of the pins are shorted out, and generally double-check your soldering. You don’t want any mischievous short circuits ruining your new LCD or Arduino board.

Once you are satisfied, plug in your new shield and enjoy your success!

successss

So there you are, another useful Arduino shield ready for action. I hope you enjoyed reading about this project, and hopefully some of you have made one as well. High resolution images are available from flickr.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, HD44780, LCD, microcontrollers, tutorialComments (16)

Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: