Tag Archive | "industries"

Kit Review – adafruit industries mintyboost v3

Hello readers

Today we are going introduce another useful kit from adafruit industries – their mintyboost kit. The purpose of this kit is to provide a powered USB socket suitable for charging a variety of devices, powered from a pair of AA cells. The mintyboost is quite a simple, yet clever design – the latest version is based around the Linear Technology LT1302 DC/DC step-up converter that we examined a few months ago – and can provide a full 5 volts DC at 500 milliamps, enough to charge the latest round of USB-chargable gadgets, including those iPhones that I keep hearing about. And unlike an iPhone, the mintyboost kit is licensed under a Creative Commons v2.5 attribution license.

But enough reading, time to make it. As always, instructions are provided online – are easy to follow and very clear. The kit will arrive in a nice reusable anti-static bag:

bagss1

Which contains everything you need except for AA cells and a housing:

partsss5

Where or how you contain your mintyboost is a subjective decision, and will probably vary wildly. The original design brief was to have it fit inside a tin that Altoids confectionary is sold in, however those are not available around my area. But I found a suitable replacement. The PCB is very small, and designed to fit snugly inside the aforementioned tin:

pcbss2

Very small – less than 38 x 20 mm in dimension. However with some care and caution, you can solder the components without using a vice or “helping hands”. Though if you have access to these, use them as it will make life a lot easier. Before we move on, please note that my 49.9k ohm resistors, ceramic capacitors and the inductor are a different size to those included with the kit. This is my second mintyboost, and to save money I bought the PCB only and used my own parts to make this one.

If size is an issue for you, it is a good idea to buy the entire kit, as you will have resistors that fit flush with the PCB, unlike mine 🙂

resiscapsss1

However, construction moved along smoothly, by following the instructions, double-checking my work and not rushing things. There is some clever designing going on here, I have never seen a resistor underneath an IC socket before!

sockss

But when PCB real estate is at a premium, you need think outside of the box. After this stage there was just the electrolytic capacitors and battery holder to install. One that has been done, you can insert some fresh AA cells and check the output voltage on the USB lines:

5vss

Looking good, however it could have been a bit higher if the AA cells were freshly charged. But the second USB voltage was spot on:

1p9vss

Success! It always feels good to make a kit and have it work the first time. The last soldering was to take care of fitting the USB socket, and then it was finished:

barefinishedss

Now to take it for a test run. I have two USB-charging items to test it with, my HTC Desire:

htcss

The LED to the right of the htc logo indicates the power is in, and the battery indicator on the left of the clock indicates charging. Excellent. The phone battery is 1400 mAh – I most likely won’t get a full recharge from the two AA cells, but enough to get me through an extra night and half a day. The mintyboost is a perfect backup-charging solution to leave in your backpack or other daily case. And now for something from Apple, an iPod of about four years old (it still holds a charge, so I’m not falling for the “buy a new iPod every twelve months” mantra):

ipodss

Again, perfect. Apple equipment can be quite finicky about the voltages being fed to them, and will not work if there is a slight difference to what the device expects to be fed. As you can see the team at adafruit have solved this problem nicely. There is also much discussion about various devices and so on in their support forums.

Now for the decision with regards to housing my mintyboost. The Altoids tins are not an option, and I’m not cannibalising my mathematical instruments storage tin. But I knew I kept this tin for a reason from last February:

contentsss

Plenty of room for the PCB, the charging cable, emergency snack cash and even more AA cells if necessary. And where else could I have put the socket, but here:

rearendss

🙂 I have named it the bunnyboost:

bunnyboostss

… who can safely live in the bottom of my backpack, ready to keep things powered at a moments’ notice. Excellent!

As you can see, the mintyboost is a simple, yet very practical kit. It would also make a great gift for someone as well, as USB-charging devices are becoming much more popular these days. If you are looking to buy a kit, those of you in the Australasian market can get one from Little Bird Electronics, or globally available from adafruit industries. High resolution photos are available on flickr.

Once again, thank you for reading and I look forward to your comments and so on. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts, and if you have any questions – why not join our Google Group? It’s free and we’re all there to learn and help each other.

[Note – this kit was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

Posted in adafruit, kit review, LT1302, mintyboostComments (6)

Kit Review – adafruit industries XBee adaptor kit

Hello readers

Today we are going to examine a small yet useful kit from adafruit industries – their XBee adaptor kit. The purpose of doing so was to save some money. How? I needed another XBee USB explorer board to connect a PC to an XBee (as we have done in Moving Forward with Arduino – Chapter Fourteen), but they are around Au$33. However I already have an FTDI USB cable, so all I really need is this kit, as it will work with the FTDI cable. So this saves me around $20.

As usual the adafruit kit packaging is simple, safe and reusable:

bagss1

The components included are good as usual, including a great solder-masked, silk-screened PCB and an excess of header pins. Got to love a bonus, no matter how small:

componentsss

This did not take very long to assemble at all. After checking the parts against the parts list, it was time to fire up the iron and solder away. As usual the kit is almost over-documented on the adafruit web pages. But that is a good thing…

gettingtheress

Be careful when you place R3, make sure it doesn’t lean in towards the end of the IC too much, otherwise they could touch, or even worse – stop the IC from being seated properly:

closeicresistorss

Regular readers will know I get annoyed when IC sockets are not included with kits – but for the first time it is fine with me. If you use a socket, the IC will be elevated too much and stop the XBee from being inserted onto the board. But apart from R3 almost stopping the show, everything went smoothly. At the time you need to solder in the 2mm header socket strips for the XBee, the easiest way (if possible) is to seat an XBee in the sockets, then into the PCB:

2mmheadersss

Once you have followed the excellent instructions, the last thing to solder is the pins for the FTDI cable. You can either lay them out flat on the PCB, or insert them through the holes. This is my preferred way, and seating the lot in a breadboard to hold it steady is a good idea:

endheadersss

And finally, we’re finished:

finishedss

A quick check with Windows to ensure everything is OK:

And we are ready for communications. This was a very simple and inexpensive board to assemble – and excellent value if you need USB connection to your PC and you already have an FTDI cable.

Well I hope you found this review interesting, and helped you think of something new to make with XBees. You can purchase the kit directly from adafruit industries.

As always, thank you for reading and I look forward to your comments and so on. Furthermore, don’t be shy in pointing out errors or places that could use improvement. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts. Or join our new Google Group. High resolution images are available on flickr.

[Note – The kit was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

Posted in adafruit, kit review, part review, WRL-08687, xbeeComments (2)

Kit Review – adafruit industries TV-B-Gone

[Updated 17/01/2013]

In this review we examine an easy to build kit from adafruit industries that offers literally hours and hours of fun, if you like to get up to some mischief – the TV-B-Gone. This fascinating little device is basically an infra-red remote control for televisions and some monitors. It has a microcontroller programmed with the “off” code for a wide range of display brands, and four very strong infra-red transmitting LEDs, two with a wide beam, and two with a narrow but longer beam.

Here is the little culprit in standard assembled form:

11

It is a very easy kit to assemble, once again the team at adafruit have published an extensive amount of information, from assembly tutorials to how it works, and even the design itself as the kit is open-source hardware. So in this article you can follow the assembly, and use of this bag of fun.

As usual, this kit arrives in a resealable, anti-static bag. After ensuring I had the correct parts, from the documentation on the adafruit website, it was time to follow the simple instructions and start getting it together. Now this will be the second time I have built a TV-B-Gone… the first one is in the photo above, and had me removed from a department store (thanks Myer…) – so this time I am rebuilding it to fit inside a typical baseball cap.

Soldering it was quite simple, the PCB is solder-masked and has a very well detailed silk-screen:

21

Just following the instructions, and being careful not to rush is the key. Another feature of adafruit kits is that the are designed very well with regards to troubleshooting. For example, you have the opportunity to test it before finishing. So at this stage you can fit the AA cells and power it up, if the LED blinks you’re all good:

3s

And we’re done… almost.

4s

For installation into the hat, the button and the LEDs will need to be a distance away from the PCB. At this stage I was not sure where to put the button, so for now it can stay on the side of the cap:

5s

Naturally you can use any momentary push button, however I will use the included example (above) with a length of wire. With this style of hat, especially a black one, slight bulges underneath the surface do not seem that apparent, however it is wiser to spread out the entire unit:

6s

Although thinner AAA cells could be used for the power supply, for a good day’s action you will want the extra capacity of AA cells, so we’ll stick with them for now. The next step was to wire up the LEDs. They were connected individually to the PCB with lengths of wire, and heatshrink was used to insulate and darken the legs:

7s

 

8s

9s

And finally the finished product, ready for insertion into a piece of clothing, or in our case – a cap:

10s

At this point it was time to take it for a test toast. The quickest way to test an infra-red transmitter is to look at the LEDs through a digital camera – it can display the infra-red wavelengths whereas the human eye cannot see them. For example:

Those LEDs can get very bright (in infra-red terms), and is also how night-illumination for digital security cameras work. If you had a lot of those LEDs pointing at a security camera at night, you could blind it. That gives me an idea…

Anyway…

Assembling the kit in this format gives you lots of options for hiding it. For example, you could:

  • put the PCB and power in a jacket’s inside pocket, and have the LEDs poke out the neck;
  • place them in a cap as we are;
  • use a large ladies’ handbag, with the LEDs out the top, and the button underneath a handle;
  • sew the LEDs into the head-cover of a hooded jacket (with some longer leads) and have the PCB, power and button in the pockets

So here are the LEDs mounted under the brim of the cap:

11s

If you are going to staple them in, be careful not to puncture the wires. The ends of the staple should come through to the top of the brim – in this case I covered them with black ink from a felt pen so they would blend in. The button lead’s position is down to personal preference, in my case the button is just poking out next to the strap on the back of the cap. So all I need to do is appear to scratch the back of my head to activate the TV-B-Gone.

And here is the finished product, with an unfinished author:

Well by now you want to see it working. So here you are… I went on a field trip wandering about the central business district of Brisbane, Australia:

My apologies for the shaky footage, doing this isn’t something you can really capture with a camera and a tripod. 🙂 The problem was getting close enough, or most places had either covered their IR receiver, had a brand of TV not recognised by the TV-B-Gone, or used a large monitor instead of a television. But it was fun nevertheless.

In conclusion, this is an easy to assemble kit which is fun and certainly will get you into harmless trouble. Again, this is the type of kit that would be good for those who are being introduced to the fascinating world of electronics (etc) as it is quick to build, and does something with the “real world”  that young people love so much. Or anyone else for that matter.

As much fun as it is to switch off televisions and advertising monitors, I would hope that end users will still be responsible with their TV-B-Gone use. Please head into a department store, your favourite eatery, coffee shop or mall and switch off the TVs.  However, please do not turn off displays in railway stations, airports or other places where the authorities will take offence. You will get in real trouble. Or if you’re feeling suicidal, go switch off the TVs at the OTB.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.
[Note – this kit was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

Posted in adafruit, kit review, learning electronics, tv-b-goneComments (12)


Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: