Tag Archive | "level"

Tutorial – LM3915 Logarithmic Dot/Bar Display Driver IC

Introduction

This is the second of three articles that will examine the LM391x series of LED driver ICs. The first covered the LM3914, this will cover the LM3915 and the LM3916 will follow. The goal of these is to have you using the parts in a small amount of time and experiment with your driver ICs, from which point you can research further into their theory and application.

Although these parts have been around for many years, the LM3915 isn’t used that much however for the sake of completeness we’re writing the tutorial. The LM3915 offers a simple way to display a logarithmic voltage level using one or more groups of ten LEDs with a minimum of fuss. If you’re wanting to make a VU meter, you should use the LM3916 which we will cover in the final instalment of this trilogy.

Instead of having each LED represent a voltage level as with the LM3914, each LED connected to the LM3915 represents a 3 dB (decibel) change in the power level of the signal. For more on decibels, check out Wikipedia.

To display these power level changes we’ll run through a couple of examples that you can use in your own projects and hopefully give you some ideas for the future. Originally by National Semiconductor, the LM391X series is now handled by Texas Instruments.

LM3915

Getting Started

You will need the LM3915 data sheet, so please download that and keep it as a reference. First – back to basics. The LM3915 controls ten LEDs. It controls the current through the LEDs with the use of only one resistor, and the LEDs can appear in a bar graph or single ‘dot’ when in use. The LM3915 contains a ten-stage voltage divider, each stage when reached will illuminate the matching LED (and those below it in level meter mode).

Let’s consider the most basic of examples (from page two of the data sheet) – a simple logarithmic display of voltage between 0 and 10V:

LM3915 demo board circuitAfter building the circuit you can connect a signal to measure via pin 5, and the GND to pin 2. We’ve built the circuit exactly as above on some stripboard for demonstration purposes, with the only difference being the use of an 8.2kΩ resistor for R2:

LM3915 demo board

To show this in action we use a signal of varying AC voltage – a sine wave at around 2 kHz. In the following video, you can see the comparison of the signal’s voltage against the LEDs being illuminated, and you will see the logarithmic voltage increase represented by the LEDs:

We used the bar display mode for the voltage increase, and the dot display mode for the voltage decrease. Did you notice that during the voltage decrease, the LEDs below the maximum level being displayed were dim? As the signal’s voltage was varying very quickly, the change in the LED’s location is a blur due to the speed of change. In the video below, we’ve slowed the frequency right down but kept the same maximum voltage.

Well that was a lot of fun, and gives you an idea of what is possible with the LM3915.

Displaying weaker signals

In non-theoretical situations your input signal won’t conveniently be between 0 and 10 V. For example the line level on audio equipment can vary between 1 and 3V peak to peak. For example, here’s a random DSO image from measuring the headphone output on my computer whilst playing some typical music:

audio signal LM3915 PC sound

Although it’s an AC signal we’ll treat it as DC for simplicity. So to display this random low DC voltage signal we’ll reduce the range of the display to 0~3V DC. This is done using  the same method as with the LM3914 – with maths and different resistors.

Consider the following formulae:

LM3915 reference voltage formula

As you can see the LED current (Iled) is simple, however we’ll need to solve for R1 and R2 with the first formula to get our required Vref of 3V. For our example circuit I use 2.2kΩ for R2 which gives a value of 1.8kΩ for R1. However putting those values in the ILED formula gives a pretty low current for the LEDs, about 8.3 mA. Live and learn – so spend time experimenting with values so you can match the required Vref and ILED.

Nevertheless in this video below we have the Vref of 3V and some music in from the computer as a sample source of low-voltage DC. This is not a VU meter! Wait for the LM3916 article to do that.

Again due to the rapid rate of change of the voltage, there is the blue between the maximum level at the time and 0V.

Chaining multiple LM3915s

This is covered well in the data sheet, so read it for more on using two LM3915s. Plus there are some great example circuits in the data sheet, for example the 100W audio power meter on page 26 and the vibration meter (using a piezo) on page 18.

Conclusion

As always I hope you found this useful. Don’t forget to stay tuned for the final instalment about the LM3916. And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in electronics, LM3915, TI, tronixstuff, tutorialComments (0)

Tutorial – LM3914 Dot/Bar Display Driver IC

Introduction

This is the first of three tutorials that will examine the LM391x series of LED driver ICs. In this first tutorial we cover the LM3914, then the LM3915 and LM3916 will follow. The goal of these tutorials is to have you using the parts in a small amount of time and experiment with your driver ICs, from which point you can research further into their theory and application.

Although these parts have been around for many years, the LM3914 in particular is still quite popular. It offers a simple way to display a linear voltage level using one or more groups of ten LEDs with a minimum of fuss.

With a variety of external parts or circuitry these LEDs can then represent all sorts of data, or just blink for your amusement. We’ll run through a few example circuits that you can use in your own projects and hopefully give you some ideas for the future. Originally by National Semiconductor, the LM391X series is now handled by Texas Instruments.

LM3914

Getting Started

You will need the LM3914 data sheet, so please download that and keep it as a reference. So – back to basics. The LM3914 controls ten LEDs. It controls the current through the LEDs with the use of only one resistor, and the LEDs can appear in a bar graph or single ‘dot’ when in use. The LM3914 contains a ten-stage voltage divider, each stage when reached will illuminate the matching LED (and those below it in level meter mode).

Let’s consider the most basic of examples (from page two of the data sheet) – a voltmeter with a range of 0~5V:

 LM3914 5V voltmeter circuit

The Vled rail is also connected to the supply voltage in our example. Pin 9 controls the bar/dot display mode – with it connected to pin 3 the LEDs will operate in bar graph mode, leave it open for dot mode. The 2.2uF capacitor is required only when “leads to the LED supply are 6″ or longer”. We’ve hooked up the circuit above, and created a 0~5V DC source via a 10kΩ potentiometer with a multimeter to show the voltage – in the following video you can see the results of this circuit in action, in both dot and bar graph mode:

Customising the upper range and LED current

Well that was exciting, however what if you want a different reference voltage? That is you want your display to have a range of 0~3 V DC? And how do you control the current flow through each LED? With maths and resistors. Consider the following formulae:

LM3914 formulae

As you can see the LED current (Iled) is simple, our example is 12.5/1210 which returned 10.3 mA – and in real life 12.7 mA (resistor tolerance is going to affect the value of the calculations).

Now to calculate a new Ref Out voltage – for example  we’ll shoot for a 3 V meter, and keep the same current for the LEDs. This requires solving for R2 in the equation above, which results with R2 = -R1 + 0.8R1V. Substituting the values – R2 = -1210 + 0.8 x 1210 x 3 gives a value of 1694Ω for R2. Not everyone will have the E48 resistor range, so try and get something as close as possible. We found a 1.8 kΩ for R2 and show the results in the following video:

You can of course have larger display range values, but a supply voltage of no more than 25 V will need to be equal to or greater than that value. E.g. if you want a 0~10 V display, the supply voltage must be >= 10V DC.

Creating custom ranges

Now we’ll look at how to create  a lower range limit, so you can have displays that (for example) can range from a non-zero positive value. For example, you want to display levels between 3 and 5V DC. From the previous section, you know how to set the upper limit, and setting the lower limit is simple – just apply the lower voltage to pin 4 (Rlo).

You can derive this using a resistor divider or other form of supply with a common GND. When creating such circuits, remember that the tolerance of the resistors used in the voltage dividers will have an affect on the accuracy. Some may wish to fit trimpots, which after alignment can be set permanently with a blob of glue.

Finally, for more reading on this topic – download and review the TI application note.

Chaining multiple LM3914s

Two or more LM3914s can be chained together to increase the number of LEDs used to display the levels over an expanded range. The circuitry is similar to using two independent units, except the REFout (pin 7) from the first LM3914 is fed to the REFlo (pin 4) of the second LM3914 – whose REFout is set as required for the upper range limit. Consider the following example schematic which gave a real-world range of 0~3.8V DC:

LM3914

The 20~22kΩ resistor is required if you’re using dot mode (see “Dot mode carry” in page ten of the data sheet). Moving on, the circuit above results with the following:

Where to from here?

Now you can visually represent all sorts of low voltages for many purposes. There’s more example circuits and notes in the LM3914 data sheet, so have a read through and delve deeper into the operation of the LM3914. Furthermore Dave Jones from eevblog.com has made a great video whcih describes a practical application of the LM3914:

Conclusion

As always I hope you found this useful. Don’t forget to stay tuned for the second and third instalments using the LM3915 and LM3916. Full-sized images are on flickr. And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in electronics, LED, LM3914, TI, tronixstuff, tutorial, voltmeterComments (0)

Review – Freetronics Module Family

Hello

In this article we examine a new range of eleven electronic modules from Freetronics. When experimenting with electronics or working on a prototype of a design, the use of electronic components in module form can make construction easier, and also reduce the time between thoughts and actually making something 🙂 So let’s have a look at each module in more detail…

PoE Power Regulator – 28V

This is a tiny switchmode voltage regulator with two uses – the first being regulation of higher voltage up to 28V carried via an Ethernet cable to a Freetronics Ethernet shield or EtherTen to power the board itself. The PCB is designed to drop into the shield or EtherTen as such:

… and converts the incoming voltage down to 7V which can be regulated by the EtherTen’s inbuilt regulator. The second use of this board is a very handy power supply for breadboarding or other experimentation. By bridging the solder pads on the rear of the board, the output is set to 5V DC, as such:

Note the addition of the header pins, which make insertion into a breadboard very easy – so now you have a 5V 1A DC power supply. For more information visit the product page.

N-MOSFET Driver/Output Module

This module contains an On Semi NTD5867NL MOSFET which allows the switching of a high current and voltage line – 60V at up to 20A – with a simple Arduino or other MCU digital output pin. The package is small and also contains enlarged holes for direct connection of high-current capability wire:

The onboard circuitry includes a pull-down resistor to ensure the MOSFET is off by default. For more information see the product page.

Logic Level Converter Module

This is a very simple and inexpensive method to interface 3.3V sensors to 5V microcontrollers in either direction.The module contains four independent channels, as shown in the image below:

However you can interface any low or higher voltage, as long as you connect the low and high voltages to the correct sides (marked on the PCB’s silk screen). For more information please visit the product page.

RGBLED Module

Surprisingly this module contains a RGB LED module (red, green and blue LEDs) which is controlled by a WS2801 constant-current LED driver IC. This module is only uses two digital output pins, and can be daisy-chained to control many modules with the same two pins. The connections are shown clearly on the module:

The WS2801 controller IC is on the rear:

There are several ways to control the LEDs. One way is using the sketch from the product home page, which results with the following demonstration output:

Or there is a unique Arduino WS2801 library available for download from here. Using the strandtest example included with the library results with the following:

During operation the module used less than 24 mA of current and therefore can happily run from a standard Arduino-type board without any issues. For more information please visit the product page.

TEMP Temperature Sensor Module

This module allows the simple measurement of temperature using the popular DS18B20 temperature sensor. You can measure temperatures between -55° and 125°C with an accuracy of +/- 0.5°C. Furthermore as the sensor uses the 1-wire bus, you can daisy-chain more than one sensor for multiple readings in the one application. The board is simple to use, and also contains a power-on LED:

Using the demonstation Arduino sketch from the product page results in the following output via the serial monitor:

Using this module is preferable to the popular Analog Devices TMP36, as it has an analogue output which can be interfered with, and requires an analogue input pin for each sensor, whereas this module has a digital output and as mentioned previously can be daisy-chained. For more information please visit the product page.

Humidity and Temperature Sensor Module

For the weather-measuring folk here is a module with temperatures and humidity. Using the popular DHT22 sensor module the temperature range is -4°C to +125°C with an accuracy of +/- 0.5°C, and humidity with an accuracy of between two and five percent. Only one digital input pin is required, and the board is clearly labelled:

There is also a blue power-on LED towards the top-right of the sensor. Using the module is quite simple with Arduino – download and use the example sketch included in the sensor library you can download from here. For the demonstration connect the centre data pin to Arduino digital two. Here is an example of the demonstration output:

Although the update speed is not lightning-fast, this should not be an issue unless you’re measuring real-time external temperature of your jet or rocket. For more information please see the product page.

Shift Register/Expansion Module

This board uses a 74HC595 serial-in parallel-out shift register which enables you to control eight digital outputs with only three digital pins, for example:

You can daisy-chain these modules to increase the number of digital outputs in multiples of eight, all while only using the three digital output pins on your Arduino or other microcontroller. For more information about how to use shift registers with Arduino systems, read our detailed tutorial. Otherwise for more information about the module please visit the product page.

Hall Effect Magnetic and Proximity Sensor Module

This module contains a sensor which changes output from HIGH to LOW when a magnetic presence is detected, for example a magnet. The board also has an LED which indicates the presence of the magnet to aid in troubleshooting:

Using this module and a small magnet would be an easy way to create a speedometer for a bicycle, the module is mounted to the fork, and the magnet on the rim of the front wheel. For more ideas consider the speedometer project in this tutorial. Otherwise for more information about this module please visit the product page.

Microphone Sound Input Module

This module performs two functions – it can return the sound pressure level (SPL) or the amplified audio waveform from the electret microphone. The LED (labelled “DETECT”) on the board visually displays an approximation of the SPL – for example:

… however the value can be returned by using an analogue input pin on an Arduino (etc). to return a numerical value. To do this connect the SPL pin to the analogue input. The MIC pin is used to take the amplified output from the microphone, to be processed by an ADC or used in an audio project. For more information please visit the product page.

Light Sensor Module

This module uses the TEMT6000 light sensor which returns more consistent values than can be possible using a light-dependent resistor. It outputs a voltage from the OUT pin that is proportional to the light level. The module is very small:

Use is simple – just measure the value returned from the OUT pin using an analogue input pin on your Arduino (etc). For more information please visit the product page. And finally, the:

Sound and Buzzer Module

This module contains a piezoelectric element that can be used to generate sounds (in the form of musical buzzes…):

Driving the buzzer is simple, just use pulse-width modulation. Arduino users can find a good demonstration of this here. Furthermore, as piezoelectric elements can also generate a small electrical current when vibrated, they can be used as “shock” detectors by measuring the voltage across the terminals of the element. The procedure to do this is also explained clearly here.

Now for a final demonstration – we use the light sensor to demonstrate making some noise with the buzzer module:

One final note I would like to make is that the design and construction quality of each module is first rate. The PCBs are strong, and the silk-screening is useful and descriptive. If you find the need for some or all of the functions made available in this range, you could do worse by not considering a Freetronics unit. Finally, although this has only been a short introduction to the modules for now, we will make use of them in later projects.

The modules are available directly from Freetronics or through their network of resellers.

Disclaimer – Modules reviewed in this article are a promotional consideration made available by Freetronics

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, freetronics, learning electronics, microcontrollers, modules, reviewComments (0)


Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: