Tag Archive | "output"

Tutorial: Maximising your Arduino’s I/O ports with MCP23017

This is chapter forty-one of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – a series of articles on the Arduino universe. The first chapter is here, the complete series is detailed here.

[Updated 04/12/2014]

In this article we discuss how to use the Microchip MCP23017 16-bit serial expander with I2C serial interface. This 28-pin IC offers sixteen inputs or outputs – and up to eight of the ICs can be used on one I2C bus… offering a maximum of 128 extra I/O ports. A few people may be thinking “Why not just get an Arduino Mega2560?” – a good question. However you may have a distance between the Arduino and the end-point of the I/O pins – so with these ICs you can run just four wires instead of a lot more; save board space with custom designs, and preserve precious digital I/O pins for other uses. Plus I think the I2C bus is underappreciated! So let’s get started…

Here is our subject of the article in DIP form:

At this point you should also download yourself a copy of data sheet – it will be referred to several times, and very useful for reference and further reading. Furthermore if you are not familiar with Arduino and the I2C bus, please familiarise yourself with the I2C tutorials parts one and two. The MCP23017 can be quite simple or complex to understand, so the goal of this article is to try and make it as simple as possible. After reading this you should have the knowledge and confidence to move forward with using a MCP23017.

First, let’s look at the hardware basics of this IC. Consider the pinouts:

The sixteen I/O ports are separated into two ‘ports’ – A (on the right) and B (on the left. Pin 9 connects to 5V, 10 to GND, 11 isn’t used, 12 is the I2C bus clock line (Arduino Uno/Duemilanove analogue pin 5, Mega pin  21), and 13 is the I2C bus data line (Arduino Uno/Duemailnove analogue pin 4, Mega pin 20). External pull-up resistors should be used on the I2C bus – in our examples we use 4.7k ohm values. Pin 14 is unused, and we won’t be looking at interrupts, so ignore pins 19 and 20. Pin 18 is the reset pin, which is normally high – therefore you ground it to reset the IC. So connect it to 5V!

Finally we have the three hardware address pins 15~17. These are used to determine the I2C bus address for the chip. If you connect them all to GND, the address is 0x20. If you have other devices with that address or need to use multiple MCP23017s, see figure 1-2 on page eight of the data sheet. You can alter the address by connecting a combination of pins 15~17 to 5V (1) or GND (0). For example, if you connect 15~17 all to 5V, the control byte becomes 0100111 in binary, or 0x27 in hexadecimal.

Next, here is a basic schematic illustrating how to connect an MCP23017 to a typical Arduino board. It contains the minimum to use the IC, without any sensors or components on the I/O pins:

Now to examine how to use the IC in our sketches.

As you should know by now most I2C devices have several registers that can be addressed. Each address holds one byte of data that determines various options. So before using we need to set whether each port is an input or an output. First, we’ll examine setting them as outputs. So to set port A to outputs, we use:

Then to set port B to outputs, we use:

So now we are in void loop()  or a function of your own creation and want to control some output pins. To control port A, we use:

To control port B, we use:

… replacing ?? with the binary or equivalent hexadecimal or decimal value to send to the register.

To calculate the required number, consider each I/O pin from 7 to 0 matches one bit of a binary number – 1 for on, 0 for off. So you can insert a binary number representing the status of each output pin. Or if binary does your head in, convert it to hexadecimal. Or a decimal number. So for example, you want pins 7 and 1 on. In binary that would be 10000010, in hexadecimal that is 0x82, or 130 decimal. (Using decimals is convenient if you want to display values from an incrementing value or function result).

If you had some LEDs via resistors connected to the outputs, you would have this as a result of sending 0x82:

For example, we want port A to be 11001100 and port B to be 10001000 – so we send the following (note we converted the binary values to decimal):

… with the results as such (port B on the left, port A on the right):

Now let’s put all of this output knowledge into a more detailed example. From a hardware perspective we are using a circuit as described above, with the addition of a 560 ohm resistor followed by an LED thence to ground from on each of the sixteen outputs. Here is the sketch:

And here is the example blinking away:

Although that may have seemed like a simple demonstration, it was created show how the outputs can be used. So now you know how to control the I/O pins set as outputs. Note that you can’t source more than 25 mA of current from each pin, so if switching higher current loads use a transistor and an external power supply and so on.

Now let’s turn the tables and work on using the I/O pins as digital inputs. The MCP23017 I/O pins default to input mode, so we just need to initiate the I2C bus. Then in the void loop() or other function all we do is set the address of the register to read and receive one byte of data.

For our next example, we have our basic sketch as described at the start of this article using four normally-open buttons (once again using the ‘button board‘) which are connected to port B inputs 0~3. Consider the first five lines of void loop() in the following example:

In this example void loop() sends the GPIOB address (0x13) to the IC. Then using Wire.requestFrom() it asks for one byte of data from the IC – the contents of the register at 0x13. This byte is stored in the variable inputs. Finally if inputs is greater than zero (i.e. a button has been pressed) the result is sent to the serial monitor window and displayed in binary. We display it in binary as this represents the state of the inputs 0~7. Here is an example of pressing the buttons 1, 2, 3 then 4 – three times:

And as we are reading eight inputs at once – you can detect multiple keypresses. The following is an example of doing just that:

As you can see pressing all four buttons returned 1111, or the first and third returned 101. Each combination of highs and lows on the inputs is a unique 8-bit number that can also be interpreted in decimal or hexadecimal. And if you wanted to read all sixteen inputs at once, just request and store two bytes of data instead of one.

For our last example – a demonstration of using port A as outputs and port B as inputs. Four LEDs with matching resistors are connected to port A outputs 0~3, with the buttons connected as per example 41.2. Here is the sketch:

By now there shouldn’t be any surprises in the last example – it receives a byte that represents port B, and sends that byte out to port A to turn on the matching outputs and LEDs. For the curious, here it is in action:

So there you have it… another way to massively increase the quantity of digital I/O pins on any Arduino system by using the I2C bus. You can get the MCP23017 from Tronixlabs.

visit tronixlabs.com

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website.

Posted in arduino, education, I2C, lesson, MCP23017, microcontrollers, tutorial

Tutorial: Video output from your Arduino

Create video output from your Arduino in chapter 35 of tutorials about the Arduino universe. The first chapter is here, the complete series is detailed here.

[Updated 10/01/2013]

In this chapter we will examine something different – the ability of our Arduino and compatible boards to create composite video output. In other words, displaying stuff from the Arduino on a TV. A lot of people were unaware of the ability to do this, however the process is very simple and not difficult to implement from a hardware perspective. Within this chapter we will learn to construct the minimum hardware required and demonstrate basic functions to get started.

To whet your appetite, here is a quick video demonstration of what is possible:

You can’t expect too much from a 16 MHz microcontroller without a video card… but the price is right, and with some imagination and the right functions you can do quite well. To make this happen we need to knock out some hardware of our own. Connection is very easy. First we need to locate three pins on our Arduino board. They will be used to output Sync, Video and also GND. For those with Arduino Uno/Freetronics Eleven etc Sync is digital 9, video is digital 7 and GND is … GND. If you have a Mega/Mega2560 Sync is digital 11 and video is A7. There is also the ability to generate audio with the methods in this article, and if you want to do this the Uno (etc.) pin is digital 11 or 10 on the Mega.

The monitor or television used needs to have a composite video-in socket (jack). For those with older televisions that have a VCR connected, you could use the video-in socket on the VCR. The schematic for video out is very simple, you only need two normal 0.25W resistors and a video lead:

If you’re not up for soldering into an RCA plug, a simple way is to chop up a standard video lead as such:

Then just wire the termination of the two resistors to the centre core (“pin”) and GND to the shield. For the purpose of this article I have made a quick TV-out shield that also includes a thumb joystick (as reviewed here).

A real triumph of engineering… however it solves the problem. The vertical trimmer is connected to A0;  the horizontal to A1; the button to digital 8 via a 10k0 pull-up resistor. Next, you will need to download and install the arduino-tvout library. It can be found here. We will use the TVoutBeta1.zip version.  Those of you who may have a nootropic design Hackvision – please note your library is different.

Now to see how to integrate TV-out into our sketch. We will run through the basic functions which integrated with your imagination should see some interesting results…  So let’s go!

For every project, place these two lines at the top of your sketch:

The first brings in the library, and the second line creates an instance of TV to use with the library functions. Next, we need to activate TVout and select the appropriate broadcast standard (PAL or NTSC). In void setup() use either

Now for the main functions. The first one of interest will be:

which … clears the screen. Or if you would like to fill the screen with white, use

Moving on – to write some text. First we need to select a font. There are three basic fonts to choose from:

  • font4x6 (each character being 4 pixels by 6 pixels, etc.)
  • font6x8
  • font8x8

Well there is four, but it wouldn’t display for me. Working on it! To choose a font use:

Then to write the text, choose the screen location with:

then display the text with:

You can also use TV.println(); to add a carriage return as expected. Display single characters with a position in the one function using:

So let’s have a look at the various fonts in action with the following sketch:

 

Now to move into the 1970s with some basic graphical functions. We have a screen resolution of 128 by 96 pixels to work with. When planning your display, you need to ensure that the sketch never attempts to display a pixel outside of the 128 x 96 screen area. Doing so generally causes the Arduino to reboot.

First let’s start with basic pixels. To draw a pixel, use:

where x and y are the coordinates of the pixel, and z is the colour (1 = white, 0 = black, 2 = inverse of current pixel’s colour). You want more than a pixel? How about a line:

Draws a line from x1, y1 to x2, y2 of colour colour. (1 = white, 0 = black, 2 = inverse of current pixel’s colour).

Rectangles? Easy:

Draws a rectangle with the top-left corner at x,y; width w, height h, colour and optional fill colour. Circles are just as simple:

Draws a circle with centre at x,y; radius r pixels, edge colour, optional fill colour.

Now to see these functions in action with the following sketch:

And for the video demonstration:

So there you have it, a start with Arduino and TV-out. Furthermore, a big thanks to http://code.google.com/u/mdmetzle/ for the arduino-tvout library.

LEDborder

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, COM-09032, education, lesson, tutorial, tv out, videoComments (42)

Kit review – nootropic design Hackvision

Hello readers

Time for another kit review – the nootropics design Hackvision,  a nice change from test equipment. The purpose of the Hackvision is to allow the user to create retro-style arcade games and so on that can be played on a monitor or television set with analogue video input. Although the display resolution is only 128 by 96 pixels, this is enough to get some interesting action happening. Frankly I didn’t think the Arduino hardware environment alone was capable of this, so the Hackvision was a pleasant surprise.

Assembly is quick and relatively simple, the instructions are online and easy to follow. All the parts required are included:

partsss

The microcontroller is pre-loaded with two games so you can start playing once construction has finished. However you will need a 5V FTDI cable if you wish to upload new games as the board does not have a USB interface. The board is laid out very clearly, and with the excellent silk-screen and your eyes open construction will be painless. Note that you don’t need to install R4 unless necessary, and if your TV system is PAL add the link which is between the RCA sockets. Speaking of which, when soldering them in, bend down the legs to lock them in before soldering, as such:

Doing so will keep them nicely flush with the PCB whilst soldering. Once finished you should have something like this:

almostdoness

All there is to do now is click the button covers into place, plug in your video and audio RCA leads to a monitor, insert nine volts of DC power, and go:

doness

Nice one. For the minimalist users out there, be careful if playing games as the solder on the rear of the PCB can be quite sharp. Included with the kit is some adhesive rubber matting to attach to the underside to smooth everything off nicely. However only fit this once you have totally finished with soldering and modifying the board, otherwise it could prove difficult to remove neatly later on. Time to play some gamesin the following video you can see how poor my reflexes are when playing Pong and Space Invaders:

[ … the Hackvision also generates sounds, however my cheap $10 video capture dongle from eBay didn’t come through with the audio … ]

Well that takes me back. There are some more contemporary games and demonstration code available on the Hackvision games web page. For the more involved Hackvision gamer, there are points on the PCB to attach your own hand-held controls such as paddles, nunchuks and so on. There is a simple tutorial on how to make your own paddles here.

Those who have been paying attention will have noticed that although the Hackvision PCB is not the standard Arduino Duemilanove-compatible layout, all the electronics are there. Apart from I/O pins used by the game buttons, you have a normal Arduino-style board with video and audio out. This opens up a whole world of possibilities with regards to the display of data in your own Arduino sketches (software). From a power supply perspective, note that the regulator is a 78L05 which is only good for 100mA of current, and the board itself uses around 25mA.

To control the video output, you will need to download and install the hackvision-version arduino-tvout library. Note that this library is slightly different to the generic arduino-tvout library with regards to function definitions and parameters. To make use of the included buttons easier, there is also the controllers library. Here is a simple, relatively self-explanatory sketch that demonstrates some uses of the tvout functions:

And the resulting video demonstration:

I will be the first to admit that my imagination is lacking some days. However with the sketch above hopefully you can get a grip on how the functions work. But there are some very good game implementations out there, as listed on the Hackvision games page. After spending some time with this kit, I feel that there is a lack of documentation that is easy to get into. Sure, having some great games published is good but some beginners’ tutorials would be nice as well. However if you have the time and the inclination, there is much that could be done. In the meanwhile you can do your own sleuthing with regards to the functions by examining the TVout.cpp file in the Hackvision tvout library folder.

For further questions about the Hackvision contact nootropic design or perhaps post on their forum. However the Hackvision has a lot of potential and is an interesting extension of the Arduino-based hardware universe – another way to send data to video monitors and televisions, and play some fun games.If you are looking for a shield-based video output device, perhaps consider the Batsocks Tellymate.

As always, thank you for reading and I look forward to your comments and so on. Furthermore, don’t be shy in pointing out errors or places that could use improvement. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts, follow me on twitter or facebook, or join our Google Group for further discussion.

High resolution images are available on flickr.

[Note – The kit was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

Posted in arduino, games, hackvision, kit review, LCD, microcontrollers, notropicsComments (2)

Education – Introduction to the Optocoupler

Hello everyone!

Today we are going to start examining Optocouplers. These are an interesting and quite convenient component, and relatively easy to implement.

First of all, what is an optocoupler?

It is a small device that allows the transmission of a signal between parts of a circuit while keeping those two parts electrically isolated. How is this so? Inside our typical optocoupler are two things – an LED and a phototransistor. When a current runs through the LED, it switches on  – at which point the phototransitor detects the light and allows another current to flow through it. And then when the LED is off, current cannot flow through the phototransistor. All the while the two currents are completely electrically isolated (when operated within their stated parameters!)

Let’s have a look at some typical optocouplers. Here are the schematic symbols for some more common units:

schematicsss

Switching DC current will flow from A to B, causing current to flow from C to D. The schematic for figure one is a simple optocoupler, consisting of the LED and the photo-transistor. However, this is not suitable for AC current, as the diode will only conduct current in one direction. For AC currents, we have an example in figure two – it has diodes positioned to allow current to flow in either polarity. Figure three is an optocoupler with a photodarlington output type. These have a much higher output gain, however can only handle lesser frequencies (that is, they need more time to switch on and off).

Physically, optocouplers can be found in the usual range of packaging, such as:

4n25

Notice the DIP casing doesn’t have the semi-circle moulded into one end like ICs do, so the white dot indicates pin one.

TO-78 (“Sputnik!”)

surface-mount SOIC-8

Some of you may be thinking “why use an optocoupler, I have a relay?” Good question. There are many reasons, including:

  • Size and weight. Relays are much larger, and heavier;
  • Solid state – no moving parts, so no metal fatigue;
  • Optocouplers are more suited to digital electronics – as they don’t have moving parts they can switch on and off much quicker than a relay;
  • Much less current required to activate than a relay coil
  • The input signal’s impedance may change, which could affect the circuit – using an optocoupler to split the signal removes this issue;

Furthermore, the optocoupler has many more interesting uses. Their property of electrical isolation between the two signals allows many things to be done. For example:

  • you might wish to detect when a telephone is ringing, in order to switch on a beacon. However you cannot just tap into the telephone line. As the ring is an AC current, this can be used with an AC-input optocoupler. Then when the line current starts (ring signal) the optocoupler can turn on the rest of your beacon circuit. Please note that you most likely need to be licensed to do such things. Have a look at the example circuits in this guide from Vishay: Vishay Optocouplers.pdf.
  • You need to send digital signals from an external device into a computer input – an optocoupler allows the signals to pass while keeping the external device electrically isolated from the computer
  • You need to switch a very large current or voltage, but with a very small input current;
  • and so on…

But as expected, the optocoupler has several parameters to be aware of. Let’s look at a data sheet for a very common optocoupler, the 4N25 – 4N25 data sheet.pdf – and turn to page two. The parameters for the input and output stages are quite simple, as they resemble those of the LED and transistor. Then there is the input to output isolation voltage – which is critical. This is the highest voltage that can usually be applied for one second that will not breach the isolation inside the optocoupler.

Side note: You may hear about optoisolators. These are generally known as optocouplers that have output isolation voltages of greater than 5000 volts; however some people regularly interchange optocouplers and optoisolators.

The next parameter of interest is the current-transfer ratio, or CTR. This is the ratio between the output current flow and the input current that caused it. Normally this is around ten to fifty percent – our 4N25 example is twenty percent at optimum input current. CTR will be at a maximum when the LED is the brightest – and not necessarily at the maximum current the LED can handle. Once the CTR is known, you can configure your circuit for an analogue response, in that the input current (due to the CTR) controls the output current.

needabench

Finally, the frequency, or bandwidth the optocoupler can accept.  Although this can be measured in microseconds, these parameters can be altered by other factors. For example, the higher the frequency of the current through the input stage, the less accurate the output stage can render the signal. The phototransistors can also be a function of the maximum bandwidth; furthermore if the optocoupler has a darlington output stage, the bandwidth can be reduced by a factor of ten. Here is an example shown on the old cathode-ray oscilloscope. I have set up a digital pulse, at varying frequencies. The upper channel on the display is the input stage, and the lower channel is the output stage:

Notice as the frequency increases, the ability of the output stage to accurately represent the input signal decreases, for example the jitter and the generally slow fall time. Therefore, especially working with high speed digital electronics, the bandwidth of your optocoupler choice does need to be taken into account.

Thus ends the introduction to optocouplers. I hope you understood and can apply what we have discussed today. In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Some information from various Isocom and Vishay data sheets and publications; various optocoupler images from element14.

Posted in 4N25, education, learning electronics, lesson, optocoupler, tutorialComments (14)


Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: