Tag Archive | "panel"

Clock Kit Round-up – December 2011

Hello Readers

If there’s one thing that I really like it’s a good clock kit. Once constructed, they can be many things, including:

  • a point of differentiation from other items in the room;
  • a reminder of the past (nixie tubes!) or possible visions of the future;
  • the base of something to really annoy other people;
  • a constant reminder to get back to work;
  • a source of satisfaction from having made something yourself!

So just for fun I have attempted to find and list as many interesting and ‘out of the ordinary’ kits as possible, and ignored the simple or relatively mundane kits out there. If you are in the clock kit business and want a mention, let me know. So in no particular order, we have:

adafruit industries “ice tube” clock

Based around a vintage Soviet-era vacuum IV-18 type fluorescent display, the ice tube clock is a rare kit that includes a nice enclosure which keeps you safe from the high voltages as well as allowing the curious to observe your soldering skills. I reviewed this kit almost a year ago and the clock is still working perfectly. Here is a video of the ice tube clock in action:

After some travelling meeting various people it seems that quite a few of us have an ice tube clock. There is something quite mesmerising about the display, perhaps helping to recall memories of our youth in the 1970s and 80s.

nootropic design Defusable Clock Kit

As recently reviewed, this kit allows you to build a simulated ‘countdown’ timer for a hypothetical explosive device that also doubles as a clock with an alarm. For example:

Whatever you do, don’t make a ‘fake bomb’ and leave it out in public! Only bad things could happen 🙂

ogilumen nixie tube kits

Not a clock kit as such, however they have made doing it yourself very easy with their power supply and IN-12A nixie board kits. We made one ourselves in a previous review, as shown below:

Alan Parekh’s Multimeter Clock Kit

This is certainly one from left field – using the analogue multimeters to display hours, minutes and seconds. See Alan describe his kit in this video:

Certainly something different and would look great on the wall of any electronics-themed area or would easily annoy those who dislike the status-quo of clock design.

akafugu VFD Modular Clock

The team at akafugu have created a modular baseboard/shield kit which holds a shield containing four IV-17 alphanumeric nixie tubes to create your own clock or display system:

vfd-7

Unlike some of the other nixie tube kits the firmware has been made public and can be modified at will. In the future different display shields will be available to extend the use of the kit.

tubeclock.com kits

This site has two kits available, one using either four or six Soviet-era IN-12 type nixie tubes:

large_red

… and another kit using the Soviet-era IN-14 nixie tubes:

You have to hand it to the former Soviet Union – they knew how to over-produce nixie tubes. One rare example where we can benefit from a command economy!

evil mad science clocks

The certainly not evil people have two clock kits, the first being the Bulbdial Clock Kit:

This uses a unique ring of LEDs around the circumference of the clock face to create shadows to mark the time. It is also available in a range of housing and face styles. Their other kit of interest is the Alpha Clock Five:

The photo of this clock doesn’t do it justice – the alphanumeric displays are 2.3″ tall, making this one huge clock. It also makes use of a Chronodot real-time clock board, which contains a temperature-controlled oscillator  which helps give it an accuracy of +-/ 2 minutes per year. Furthermore you can modify this easily using an FTDI cable and the Arduino IDE with some extra software. Would be great for model railways (or even a real railway station) or those insanely conscious about the time.

Kabtronics Clock Kits

This organisation has several clock kits which span a range of technology from the later part of the twentieth century. These guys can only be true clock enthusiasts! Starting with the 1950s, they have their Nixie-Transistor Clock:

neononwall

Look – no integrated circuits, leaving the kit true to the era. If you need to hide from someone for a weekend, building this would be a good start. Next we move onto the 1960s and the Transistor Clock:

onwall_l

The 1960s brought with it LEDs so they are now used in this kit, however the logic is still all analogue electronics. However next we can move to the 1970s, and finally save some board space with the TTL Clock:

ttlclock_1721

This would still be fun to assemble but somewhat less punishing for those who don’t enjoy solder fumes that much. However you still have a nice kit and something to be proud of. Finally, the last in the line is the 1980s-themed Surface-Mount Technology Clock:

smtclock_l

So here we have a microcontroller, SMT components, and a typical reduction in board size. Their range is an excellent way of demonstrating the advances in technology over the years.

The GPS FLW Display Clock

Wow – this clock makes use of huge Burroughs B7971 15-segment nixie tube displays and a GPS receiver to make a huge, old-style/new-tech clock. Check out the demonstration video:

This thing is amazing. And it is actually cheaper to buy a fully-assembled version (huh). The same organisation also offers another GPS-controlled clock using IN-18 nixie tubes:

nixichron10

Again, it isn’t inexpensive – however the true nixie tube enthusiasts will love it. This clock would look great next to a post-modern vintage hifi tube amplifier. Moving forward to something completely different now, we have the:

adafruit industries monochron®

Almost the polar opposite of the nixie-tube clocks, the monochron uses an ATmega328 microcontroller and a 128 x 64 LCD module to create some interesting clock effects. For example:

Many people have created a variety of displays, including space invaders and the pong game simulation. The clock also includes the laser-cut acrylic housing which provides a useful and solid base for the clock.

Spikenzie Labs Solder : Time™ watch kit

Technically this is a watch kit, however I don’t think that many people would want to walk around wearing one – but it could be used in more permanent or fixed locations. Correct me if I’m wrong people. However in its defence it is a very well designed kit that is easy to solder and produces a nice clock:

It uses a separate real-time controller IC to stay accurate, and the design However this would be a great suggestion as a gift for a younger person to help them become interesting in electronics and other related topics. The asm firmware is also available for you to modify using Microchip MPLAB software if that takes your fancy.

Velleman Kits

The Velleman company has a range of somewhat uninspiring clock kits, starting with the Scrolling/Rolling LED Clock:

… the 2ÂĽ” 7-Segment Digital Clock:

This clock includes the housing and also accepts an optional temperature sensor, and therefore can display this as well. There is also the aptly-named – Digital LED Clock:

mk151

It tells the time and would be useful in a 1980s-era idea of the future movie set. The final velleman clock kit is the Jumbo Single-Digit Clock:

In all fairness this one looks quite interesting – the LED display is 57mm tall and the time is display one digit at a time. It is powered by a PIC16F630 however the firmware is proprietary to velleman.

Nocrotec Nixie Clocks

This company has a range of kits using nixie tubes and numitrons (low voltage incadescent displays in tubes). One particularly lovely kit is their IN-8 Blue Dream kit:

in-8-bd-h-side-blue

The blue glow at the base of the nixie tubes is due to an LED mounted at the bottom of the tube. Another aesthetically-pleasing kit is their Little Blue Something nixie clock. Check out their demonstration video:

nixiekits.eu

More IN-12 nixie clocks from Germany, the first being the Manuela_HR. You can buy the kit without an enclosure, or choose from the ‘office’ style:

… or this funky number:

You can specify it with RGB LEDs which colour-cycle to provide the effect shown above. For those not too keen you can also buy the kits pre-assembled. Their other kit is the Sven:

Sven_IN-8-2_720

It is available with IN-8 or IN-14 nixie tubes. The design quality of the enclosure is outstanding, a lot of effort has been made to produce a complete kit that “won’t look like a kit” when completed.

Minty Time

This is a small binary clock kit that fits in an Altoids tin:

This is a nice little kit as it is inexpensive, easy to make and very well documented. You could also mount this in a variety of flat surfaces, limited only by your imagination.

The Chronulator

Here we find a unique design that uses analogue panel meters in a similar method to the multimeter clock detailed previously. Here is an example of the completed kit:

IMG_1113

The kit contains the electronics and meters (or you can delete the meters for a discount if you already have some) however the housing is up to you. Furthermore, this kit has some of the best instructions (.pdf) I have ever seen. They are a credit to the organisation. Our final clock kit is the …

Denkimono

This is another clock kit in the style of ‘suspicious bomb timer’-looking – and it pulls this off quite well. Consider the following video demonstration:

As well as a normal clock it can function as an alarm, stopwatch, countdown timer and lap counter. The instructions (.pdf) are well written and easy to follow. Furthermore the Denkimono is also well priced for the kit and delivery.

Hopefully this catalogue of clock kits was of interest to you. If you have found some other kits to add to the list, or wish to disagree or generally comment about this article please do so via the comment section below. This article was not sponsored in any way.

Have fun and keep checking into tronixstuff.com. Why not follow things on twitter, Google+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in clocks, kit review, nixie, review, TTL, VFDComments (8)

Tutorial: Arduino and Numeric Keypads – Part Two

Use larger numeric keypads in this addendum to chapter forty-two of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – a series of articles on the Arduino universe. The first chapter is here, the complete series is detailed here. Any files from tutorials will be found here.

Welcome back fellow arduidans!

This is the second part of our numeric keypad tutorial – in which we use the larger keypads with four rows of four buttons. For example:

Again, the keypad looks like a refugee from the 1980s – however it serves a purpose. Notice that there are eight connections at the bottom instead of seven – the extra connection is for the extra column of buttons – A~D. This example again came from Futurlec. For this tutorial you will need the data sheet for the pinouts, so download it from here (.pdf).

To use this keypad is very easy, if you haven’t already done so, download the numeric keypad Arduino library from here, copy the “Keypad” folder into your ../arduino-002x/libraries folder, then restart the Arduino IDE.

Now for our first example – just to check all is well. From a hardware perspective you will need:

  • An Arduino Uno or 100% compatible board
  • A 4×4 numeric keypad
  • An LCD of some sort. We will be using an I2C-interface model. If you are unsure about LCD usage, please see this tutorial
  • If you don’t have an LCD – that’s ok. Our demonstration sketch also sends the key presses to the serial monitor. Just delete the lines referring to Wire, LCD etc.
Connect the keypad to the Arduino in the following manner:
  • Keypad row 1 (pin eight) to Arduino digital 5
  • Keypad row 2 (pin 1) to Arduino digital 4
  • Keypad row 3 (pin 2) to Arduino digital 3
  • Keypad row 4 (pin 4) to Arduino digital 2
  • Keypad column 1 (pin 3) to Arduino digital 9
  • Keypad column 2 (pin 5) to Arduino digital 8
  • Keypad column 3 (pin 6) to Arduino digital 7
  • Keypad column 4 (pin 7) to Arduino digital 6
Now for the sketch – take note how we have accommodated for the larger numeric keypad:
  • the extra column in the array char keys[]
  • the extra pin in the array colPins[]
  • and the byte COLS = 4.

And our action video:


Now for another example – we will repeat the keypad switch from chapter 42 – but allow the letters into the PIN, and use the LCD instead of LEDs for the status. In the following example, the PIN is 12AD56. Please remember that the functions correctPIN() and incorrectPIN() are example functions for resulting PIN entry – you would replace these with your own requirements, such as turning something on or off:

Now let’s see it in action:

So now you have the ability to use twelve and sixteen-button keypads with your Arduino systems.

LEDborder

Have fun and keep checking into tronixstuff.com. Why not follow things on twitter, Google+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, DFR0063, lesson, microcontrollers, numeric keypad, tutorialComments (2)

Tutorial: Arduino and Numeric Keypads

Use numeric keypads with Arduino in chapter forty-two of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – a series of articles on the Arduino universe. The first chapter is here, the complete series is detailed here. Any files from tutorials will be found here.

This is part one of two chapters that will examine another useful form of input – the numeric keypad; and some applications that hopefully may be of use.  Here is the example we will be working with:

It seems quite similar to the keypad from a 1980s-era Dick Smith Electronics cordless phone. Turning the keypad over we find seven pins:

Personally I like this type of connection, as it makes prototyping very easy using a breadboard – you just push it in. Looking at the back the pins are numbered seven to one (left to right). My example was from Futurlec of all places. You can also find types that have solder pads. At this point you need to download the data sheet.pdf, as it shows the pinouts for the rows and columns. At first glance trying to establish a way of reading the keypad with the Arduino does seem troublesome – however the basic process is to ‘scan’ each row and then test if a button has been pressed.

If your keypad has more than seven pins or contacts – and the data sheet was not supplied, you will need to manually determine which contacts are for the rows and columns. This can be done using the continuity function of a multimeter (the buzzer). Start by placing one probe on pin 1, the other probe on pin 2, and press the keys one by one. Make a note of when a button completes the circuit, then move onto the next pin. Soon you will know which is which. For example, on the example keypad pins 1 and 5 are for button “1”, 2 and 5 for “4”, etc…

In the interest of keeping things simple and relatively painless we will use the numeric keypad Arduino library. Download the library from here, copy the “Keypad” folder into your ../arduino-002x/libraries folder, then restart the Arduino IDE.

Now for our first example. From a hardware perspective you will need

  • An Arduino Uno or 100% compatible board
  • A numeric keypad
  • An LCD of some sort. We will be using an I2C-interface model. If you are unsure about LCD usage, please see this tutorial
  • If you don’t have an LCD – that’s ok. After installing the keypad library, select File>Examples>Keypad>Examples>HelloKeypad in the IDE.
Connect the keypad to the Arduino in the following manner:
  • Keypad row 1 to Arduino digital 5
  • Keypad row 2 to Arduino digital 4
  • Keypad row 3 to Arduino digital 3
  • Keypad row 4 to Arduino digital 2
  • Keypad column 1 to Arduino digital 8
  • Keypad column 2 to Arduino digital 7
  • Keypad column 3 to Arduino digital 6
Now for the sketch:

For the non-believers, here it is in action:


As you can see the library really does all the work for us. In the section below the comment “keypad type definition” we have defined how many rows and columns make up the keypad. Furthermore which digital pins connect to the keypad’s row and column pins. If you have a different keypad such as a 16-button version these will need to be modified. Furthermore you can also map out what the buttons will represent in the array “keys”. Then all of these variables are passed to the library in the function Keypad keypad = Keypad() etc.

Reading the buttons pressed is accomplished in void loop()… it reads the keypad by placing the current value into the char variable “key”. The if… statement tests if a button has been pressed. You can reproduce this loop within your own sketch to read values and then move forward to other functions. Let’s do that now in our next example.

Keypad Switch

Using our existing example hardware we can turn something on or off by using the keypad – replicating what can be found in some alarm systems and so on. Our goal with this example is simple – the systems waits for a PIN to be entered. If the PIN is correct, do something. If the PIN is incorrect, do something else. What the actions are can be up to you, but for the example we will turn on or off a digital output. This example is to give you a concept and framework to build you own ideas with.

The hardware is the same as the previous example but without the LCD. Instead, we have a 560 ohm resistor followed by an LED to GND from digital pin ten. Now for the sketch:

And the ubiquitous demonstration video:

This sketch is somewhat more complex. It starts with the usual keypad setting up and so on. We have two arrays, attempt and PIN. PIN holds the number which will successfully activate the switch, and attempt is used to store the key presses entered by the user. Users must press ‘*’ then the PIN then ‘#’ to activate the switch.

The comparison to check for accuracy is in the function checkPIN(). It compares the contents of PIN against attempt. If they match, the function correctPIN() is called. If the entered PIN is incorrect, the function incorrectPIN() is called. We also call the function incorrectPIN() in void setup to keep things locked down in case of a power failure or a system reset.

You can now see that such a complex device can be harnessed very easily, and could have a variety of uses. In part two, we will look at the 16-digit 

LEDborder

Have fun and keep checking into tronixstuff.com. Why not follow things on twitter, Google+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, learning electronics, lesson, microcontrollers, numeric keypad, tutorialComments (9)


Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

FĂĽr unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: