Tag Archive | "ping"

Project – Ultrasonic Combination Switch

In this project you learn how to make an ultrasonic distance-sensing combination switch.

Updated 18/03/2013

Time for a follow-up to the Single Button Combination Lock by creating another oddball type of switch/lock. To activate this switch we make use of a Parallax Ping))) Ultrasonic sensor, an Arduino-style board and some other hardware – to make a device that receives a four-number code which is made up of the distance between a hand and the sensor. If Arduino and ultrasonic sensors are new to you, please read this tutorial before moving on.

The required hardware for this project is minimal and shown below – a Freetronics Arduino-compatible board, the Ping))) sensor, and for display purposes we have an I2C-interface LCD module:

The combination for our ‘lock’ will consist of four integers. Each integer is the distance measured between the sensor and the user’s hand (etc.). For example, a combination may be 20, 15, 20, 15. So for the switch to be activated the user must place their hand 20cm away, then 15, then 20, then 15cm away. Our switch will have a delay between each measurement which can be modified in the sketch.

To keep things simple the overlord of the switch must insert the PIN into the switch sketch. Therefore we need a way to take measurements to generate a PIN. We do this with the following sketch, it simply displays the distance on the LCD):

And here is a demonstration of the sketch in action:

Now for the switch itself. For our example the process of “unlocking” will be started by the user placing their hand at a distance of 10cm or less in front of the sensor. Doing so will trigger the function checkPIN(), where the display prompts the user for four “numbers” which are returned by placing their hand a certain distance away from the sensor four times, with a delay between each reading which is set by the variable adel. The values of the user’s distances are stored in the array attempt[4].

Once the four readings have been taken, they are compared against the values in the array PIN[]. Some tolerance has been built into the checking process, where the value entered can vary +/- a certain distance. This tolerance distance is stored in the variable t in this function. Each of the user’s entries are compared and the tolerance taken into account. If each entry is successful, one is added to the variable accept. If all entries are correct, accept will equal four – at which point the sketch will either “unlock” or display “*** DENIED ***” on the LCD.

Again, this is an example and you can modify the display or checking procedure yourself. Moving forward, here is our lock sketch:

To finish the switch, we housed it in the lovely enclosure from adafruit:

And for the final demonstration of the switch in action. Note that the delays between actions have been added for visual effect – you can always change them to suit yourself:

So there you have it – the base example for a different type of combination switch. I hope someone out there found this interesting or slightly useful.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in adafruit, arduino, combination lock, DFR0063, enclosure, hardware hacking, parallax, ping, projects, ultrasonicComments (2)

Tutorial – Parallax Ping))) Ultrasonic Sensor

Sense distance with ultrasonic sensors in chapter forty-five of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – a series of articles on the Arduino universe. The first chapter is here, the complete series is detailed here.

Updated 05/02/2013

Whilst being a passenger in a vehicle with a ‘reversing sensors’, I became somewhat curious as to how the sensors operated and how we can make use of them. So for this chapter we will investigate an ultrasonic sensor from Parallax called the Ping)))™ Ultrasonic Distance Sensor. It can measure distances between ~2cm and ~3m in length. Here is our example sensor:

(Memories of Number Five …)

Parallax have done a lot of work, the board contains not just the bare sensor hardware but controller circuitry as well:

Which is great as it leaves us with only three pins – 5V, GND and signal. More on those in a moment, but first…

How does it work?

Good question. The unit sends out an ultrasonic (a sound that has a frequency which is higher than can be heard by the human ear) burst of sound from one transducer (the round silver things) and waits for it bounce off an object and return – which is detected by the other transducer. The board will then return to us the period of time taken for this process to take, which we can interpret to determine the distance between the sensor and the object from which the ultrasonic sound bounced from.

The Ping))) only measures a distance when requested – to do this we send a very short HIGH pulse of five microseconds to the signal pin. After a brief moment a pulse will come from the board on the same signal pin. The period of this second pulse is the amount of time the sound took to travel out and back from the sensor – so we divide it by two to calculate the distance. Finally, as the the speed of sound is 340 metres per second, the Arduino sketch can calculate the distance to whatever units required.

It may sound complex, but it is not –  so let’s run through the theory of operation with an example. Using our digital storage oscillscope we have measured the waveforms on the signal pin during a typical measurement. Consider the following example of measuring a distance of 12cm:

fulltwelvecm

You can see the 5uS pulse in the centre and the pulse returned from the sensor board on the right. Now to zoom in on the returned pulse:

twelvecm

Without being too picky the pulse is roughly 720uS (microseconds) long – the duration of ultrasonic sound’s return trip from the sensor board. So we divide this by two to find the time to travel the distance – 360uS. Recall the speed of sound is 340 metres per second – which converts to 29.412 uS per centimetre. So, 360uS divided by 29.412 uS gives 12.239902081… centimetres. Rounded that gives us 12 centimetres. Easy!

Finally, there are some limitations to using the Ping))) sensor. Download the data sheet (pdf) and read pages three to five for information on how to effectively mount the sensor and the sensitivity results from factory resting.

How do we use it with Arduino?

As described previously we first need to send a 5uS pulse, then listen for the return pulse. The following sketch does just that, then converts the data to centimetres and displays the result on the serial monitor. The code has been commented to explain each step.

And the results of some hand-waving in the serial monitor:

So there you have it – you can now measure distance with a degree of accuracy. However that image above isn’t very exciting – instead let’s use a 7-segment display shield to get things up in lights. The shield uses the NXP SAA1064 LED display driver IC (explained quite well here). You can download the demonstration sketch from here. And now for the video:

So there you have it – now the use of the sensor is up to your imagination. Stay tuned using the methods below to see what we get up to with this sensor in the future.

LEDborder

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, distance, learning electronics, lesson, microcontrollers, parallax, ping, sensor, tutorial, ultrasonic, UncategorizedComments (25)

Blinky the one-eyed clock

In this tutorial you learn how to make a blinking clock with a difference!

Updated 18/03/2013

Followers of my website would realise that I tend to make too many clocks in those tutorials. Well, I like making clocks… so here is another one. However this time I have tried to make the most simple version possible. Usually projects will have many LEDs, or perhaps an LCD, buzzers, buttons, all sorts of things. Which looks great and will impress many. But the other day I thought to myself … “how few things do you need to show the time?”

So here is my answer to that question: Blinky the one-eyed clock …

workingsss

It reminds me of the giant killer orb from The Prisoner… Using a minimal Arduino bootloader system, a DS1307 real time clock IC and an RGB diffused LED … we can make a clock that blinks the time, using the colours of the LED to note different numerical values. For example, if the time is 12:45, the clock will blink red 12 times, then show blue for a second (think of this as the colon on a digital clock) then blink four times in green (for forty minutes), then blink three times in red for the individual minutes. If there is a zero, blink blue quickly. Then the clock will not display anything for around forty seconds, then repeat the process. Here he (she, it?) is blinking the time:

Setting the clock is simple. It is set to start at 12:00 upon power up. So for the first use you have to wait until about five seconds before midday or midnight, then power it up. To save cost it doesn’t use a backup lithium battery on the real-time clock IC, but you could if you really wanted to. If you would like to follow my design process narrative, please read on. If you only want the sketch and schematic, 🙁 head to the bottom of this article.

Design process narrative…

So let’s get started!

The first thing to do was test the RGB LED for brightness levels, so I just connected it to the digital output pins of my Eleven via suitable current-limiting resistors. Each LED is going to be different, so to ensure maximum brightness without causing any damage you need to calculate the appropriate resistor values. This is quite easy, the formula is: resistor (ohms) = voltage drop / LED current So if you have a 5 V supply, and LED that needs only 2 volts, and draws 20 milliamps (0.2 amps) , the calculation will be: resistor = (5-2)/0.02 = 150 ohms. To be safe I used a 180 ohm resistor. The LED was tested with this simple sketch:

It was interesting to alter the value of d, the delay variable, to get an idea for an appropriate blinking speed. Originally the plan was to have the LED in a photo frame, but it was decided to mount a ping-pong ball over the LED for a retro-style look.  Here is a short video of the result of the test:

If you are going to use a ping-pong ball, please be careful when cutting into it with a knife, initially it may require a lot of force, but once the knife cuts through it does so very quickly:

cuttingppballss

Now it was time to develop the sketch to convert time into blinks. The sketch itself is quite simple. Read the hours and minutes from the DS1307 timer IC; convert the hours to 12 hour time; then blink an LED for the number of hours, display another colour for the colon; divide the minutes by ten and blink that in another colour; then the modulus of minutes and ten to find the individual minutes, and blink those out. Here is the first sketch I came up with. Finally, the code was tested using the Eleven board and my DS1307 real time clock shield. It is best to use existing hardware while testing, before committing to purchasing new hardware and so on. So here it is on the breadboard:

workingprototype1ss

And telling the time! In this example, the time is 3:45…

But perhaps that was a little bland. By using analogWrite() we can control the brightness of the LED segments. So now there are two more functions, whiteGlow() and blueGlow(); whose purpose is to make the display “glow” by increasing then decreasing the brightness. And scale back the amount of blinking, to increase battery life and make blinky less obvious. So now the display will glow white to announce the forthcoming display of time, wait a second, blink the time (with a blue glowing colon) then stay dark for ten seconds before repeating the process. Here is a quick demonstration of this display style:

Here is the sketch for the above demonstration, and the final one I will use with the hardware prototype. Once happy with the sketch, I put a fresh ATmega328 with Arduino bootloader in the board and programmed it with the blinky sketch, to be used in the final product.

Next was to build my own hardware. My last hardware unknown is the amount of current the circuit draws. Once I know this the correct voltage regulator and power supply can be decided upon. I had a fair idea it would be less than 100 milliamps, so I put a 6V battery onto supply duty via a 78L05 5V regulator (data sheet), and recorded the result:

So it varies, between 20.5 and 46 mA. As it only reaches 46 mA for a short time, we could consider the constant draw to be averaged out at 30 mA. I really want this to be able to run from a battery, but without having an external lead-acid battery lurking around, it will need a plug-pack with an output voltage greater than 7V DC. Another alternative would be to run it from a USB socket, a nice source of 5V. If doing so, there wouldn’t be a need for the 78L05 regulator. Which brings us to the  circuit diagram, which includes the power regulator:

blinkyschematicss

 

It does not allow for programming in the circuit, so you will need to program the microcontroller on another Arduino or compatible board, then transfer it to the blinky circuit board as described above. At this stage I tested it again, but using a solderless breadboard. In doing so you can make final hardware checks, and  generally make sure everything works as it should. This is also a good stage to double-check you are happy with the display behaviour, default time and so on.

breadboardedss

Time to solder up the circuit on some stripboard. Blank stripboard varies, but luckily I found this and a nice box to hold it in:

boxandpcbss

Stripboard does vary between retailers and so on, so you will need to work out the layout with your own board. In doing so, please double-check your work – follow the layout against the schematic and so on. Have a break, then check it again. There is nothing worse than soldering away to realise you are one strip too far over or something. My hand-eye coordination is not the best, therefore my soldering isn’t pretty, but it works:

solderedfrontss

 

solderedrearss

One would say that there is a good argument for making your own PCBs… and I would start to agree with that. The LED is soldered to some short leads to give it a bit of play, and some heatshrink over the legs to keep them isolated:

heatshrinkledss

 

And finally, to add a DC socket to feed blinky some power…

finalbaress

 

The last thing was to check the soldering once more under natural light, to check for bridges or shorts, then have a cup of tea. Upon my return I drilled out a hole in the enclosure lid for the LED, and one one the side for the DC socket, and fitted the lot together… and success! It worked 🙂

So there you have it. The journey from a daydream to a finished product… well a prototype anyway. But it works, and that is the best feeling of all. You can download the schematic from here. And here is the Arduino sketch:

I hope you enjoyed reading this post and hopefully felt inspired enough to make your own.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, clocks, ds1307, microcontrollers, projects, RGB LED, tutorialComments (18)


Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: