Tag Archive | "pulse"

Review: Gravitech 7-Segment Arduino Shield

Hello Readers

In this article we examine the “7-Segment Arduino Shield” received for review from the team at Gravitech in the United States. This is an Arduino Uno/Duemilanove-type compatible shield that contains four very useful items:

  • Four 7-segment LED numerical displays – driven by the NXP SAA1064 LED display driver IC;
  • A large 10mm RGB LED;
  • A Microchip 24LC128 EEPROM, and
  • A TI TMP75 digital temperature sensor.
Apart from the LED all the other components are controlled via the I2C bus. So as well as being generally useful for experimenting, monitoring temperature and so on, this is an ideal board for Arduino and I2C bus practice. (If you have not done so already, consider reading our I2C tutorial, part one and two). Let’s look at the hardware, then move on to using the features.
As with other Gravitech products, the shield arrives in a reusable static shielding bag:
and here we have it:
The IC at the top-left of the shield is the TMP75 temperature sensor, bottom-left is the 24LC128 EEPROM, and the whopper below the first two digits is the NXP SAA1064. The shield layout is very neat and clean, and the white finish is a pleasant change compared to the usual black or green Arduino shields out there. The PWR LED is a blue colour. The only issues I found were that you cannot use this with a Mega due to the location of the I2C pins, and the component leads were not trimmed at the factory, which caused an issue when the shield was inserted into an Ethernet shield. This is easily solved by clipping the leads yourself:
Here is the shield in operation using the supplied demonstration sketch. The temperature is displayed in Celsius, with the LED changing colour depending on the temperature:

That is all very good, but how do we use the features of the board? Let’s look at each of the aforementioned features individually. First of all, the numeric display. The four seven-segment LED displays are controlled by the NXP SAA1064 LED display driver (data sheet (.pdf)). I have written a separate tutorial on how to use this IC, and it is completely compatible with this shield. So visit the tutorial here and put the numbers to work! Please note the I2C bus address for the SAA1064  is 0x38.

Next we have the RGB LED. Red, green and blue are connected to digital pins 3, 5 and 6 respectively. These are also pulse-width modulation pins, so you can have altering the brightness. Here is a simple demonstration sketch:

And for the curious, here it is in action:

Next, the Microchip 24LC128 EEPROM. It has 128kbit storage space, which translates to 16 kilobytes. The I2C bus address is 0x50. Once again there is a complete explanation of how to use this sort of EEPROM in another tutorial – check it out. But for quick reference the following demonstration sketch writes the numbers 0~255 to memory locations 0~255:

Although there is 16 kilobytes of memory the sketch only writes and reads to the first 255 locations. Each location can store a byte of value between zero and 255. Here is a screen shot of the serial monitor results (click to enlarge):

And now time to work with the Texas Instruments TMP75 temperature sensor (data sheet.pdf). It has a reasonable operating temperature range of between -40 and 125 degrees Celsius – however this would exceed the range in which your Arduino is capable of working, so no leaving the shield on the car dashboard during a hot summer’s day. The I2C bus address for the TMP75 is 0x49. We will deconstruct the Gravitech demonstration sketch to explain how the temperature works.

The TMP75 needs to be initialised before measurement can take place, by sending the following data:

The temperature data is received in two bytes of data, as it spans 12 bits. Thankfully the demonstration sketch has done the work for us. Have a look at the Cal_temp() function, which converts the two raw bytes of data from the TMP75. There is some bitwise arithmetic in there, however if you are not keen on going down to that level, it is easy enough to cut and paste the temperature and numeric display functions.  Here is a quick video of the demonstration sketch in action:

]

So there you have it – another useful and educational shield for use with your Arduino. If you have any questions or enquiries please direct them to Gravitech via their contact page. Gravitech products including the 7-segment shield are available directly from their website or these distributors.

As always, thank you for reading and I look forward to your comments and so on. Furthermore, don’t be shy in pointing out errors or places that could use improvement. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts, follow on twitterfacebook, or join our Google Group.

[Disclaimer – the shield reviewed in this article was a  promotional consideration made available by Gravitech]

High resolution photos are available on flickr.

Posted in 24LC128, arduino, gravitech, I2C, LED, microcontrollers, product review, review, SAA1064, TMP75, tutorialComments (0)

Tutorial: Arduino and the SPI bus part II

This is chapter thirty-six of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – A seemingly endless series of articles on the Arduino universe. The first chapter is here, the complete series is detailed here

[Updated 10/01/2013]

This is the second of several chapters in which we are investigating the SPI data bus, and how we can control devices using it with our Arduino systems. If you have not done so already, please read part one of the SPI articles. Again we will learn the necessary theory, and then apply it by controlling a variety of devices. As always things will be kept as simple as possible.

First on our list today is the use of multiple SPI devices on the single bus. We briefly touched on this in part one, by showing how multiple devices are wired, for example:

Notice how the slave devices share the clock, MOSI and MISO lines – however they both have their own chip select line back to the master device. At this point a limitation of the SPI bus becomes prevalent – for each slave device we need another digital pin to control chip select for that device. If you were looking to control many devices, it would be better to consider finding I2C solutions to the problem. To implement multiple devices is very easy. Consider the example 34.1 from part one – we controlled a digital rheostat. Now we will repeat the example, but instead control four instead of one. For reference, here is the pinout diagram:

Doing so may sound complex, but it is not. We connect the SCK, MOSI and  MISO pins together, then to Arduino pins D13, D11, D12 respectively. Each CS pin is wired to a separate Arduino digital pin. In our example rheostats 1 to 4 connect to D10 through to D7 respectively. To show the resistance is changing on each rheostat, there is an LED between pin 5 and GND and a 470 ohm resistor between 5V and pin 6. Next, here is the sketch:

Although the example sketch may be longer than necessary, it is quite simple. We have four SPI devices each controlling one LED, so to keep things easy to track we have defined led1~led4 to match the chip select digital out pins used for each SPI device. Then see the first four lines in void setup(); these pins are set to output in order to function as required. Next – this is very important – we set the pins’ state to HIGH. You must do this to every chip select line! Otherwise more than one CS pins may be initially low in some instances and cause the first data sent from MOSI to travel along to two or more SPI devices. With LEDs this may not be an issue, but for motor controllers … well it could be.

The other point of interest is the function

We pass the value for the SPI device we want to control, and the value to send to the device. The value for l is the chip select value for the SPI device to control, and ranges from 10~7 – or as defined earlier, led1~4. The rest of the sketch is involved in controlling the LED’s brightness by varying the resistance of the rheostats. Now to see example 36.1 in action via the following video clip:


(If you are wondering what I have done to the Freetronics board in that video, it was to add a DS1307 real-time clock IC in the prototyping section).

Next on the agenda is a digital-to-analogue converter, to be referred to using the acronym DAC. What is a DAC? In simple terms, it accepts a numerical value between zero and a maximum value (digital) and outputs a voltage between the range of zero and a maximum relative to the input value (analogue). One could consider this to be the opposite of the what we use the function analogRead(); for. For our example we will use a Microchip MCP4921 (data sheet.pdf):

(Please note that this is a beginners’ tutorial and is somewhat simplified). This DAC has a 12-bit resolution. This means that it can accept a decimal number between 0 and 4095 – in binary this is 0 to 1111 1111 1111 (see why it is called 12-bit) – and the outpout voltage is divided into 4096 steps. The output voltage for this particular DAC can fall between 0 and just under the supply voltage (5V). So for each increase of 1 in the decimal input value, the DAC will output around 1.221 millivolts.

It is also possible to reduce the size of the voltage output steps by using a lower reference voltage. Then the DAC will consider the reference voltage to be the maximum output with a value of 4095. So (for example) if the reference voltage was 2.5V, each increase of 1 in the decimal input value, the DAC will output around 0.6105 millivolts. The minimum reference voltage possible is 0.8V, which offers a step of 200 microvolts (uV).

The output of a DAC can be used for many things, such as a function generator or the playback of audio recorded in a digital form. For now we will examine how to use the hardware, and monitoring output on an oscilloscope. First we need the pinouts:

By now these sorts of diagrams shouldn’t present any problems. In this example, we keep pin 5 permanently set to GND; pin 6 is where you feed in the reference voltage – we will set this to +5V; AVss is GND; and Vouta is the output signal pin – where the magic comes from 🙂 The next thing to investigate is the MCP4921’s write command register:

Bits 0 to 11 are the 12 bits of the output value; bit 15 is an output selector (unused on the MPC4921); bit 14 controls the input buffer; bit 13 controls an inbuilt output amplifier; and bit 12 can shutdown the DAC. Unlike previous devices, the input data is spread across two bytes (or a word of data). Therefore a small amount of work needs to be done to format the data ready for the DAC. Let’s explain this through looking at the sketch for example 36.2 that follows. The purpose of the sketch is to go through all possible DAC values, from 0 to 4095, then back to 0 and so on.

First. note the variable outputvalue – it is a word, a 16-bit unsigned variable. This is perfect as we will be sending a word of data to the DAC. We put the increasing/decreasing value for a into outputValue. However as we can only send bytes of data at a time down the SPI bus, we will use the function highbyte() to separate the high side of the word (bits 15~8) into a byte variable called data.

We then use the bitwise AND and OR operators to set the parameter bits 15~12. Then this byte is sent to the SPI bus. Finally, the function lowbyte() is used to send the low side of the word (bits 7~0) into data and thence down the SPI bus as well.

Now for our demonstration sketch:

And a quick look at the DAC in action via an oscilloscope:

By now we have covered in detail how to send data to a device on the SPI bus. But how do we receive data from a device?

Doing so is quite simple, but some information is required about the particular device. For the rest of this chapter, we will use the Maxim DS3234 “extremely accurate” real-time clock. Please download the data sheet (.pdf) now, as it will be referred to many times.

The DS3234 is not available in through-hole packaging, so we will be using one that comes pre-soldered onto a very convenient breakout board:

It only takes a few moments to solder in some header pins for breadboard use. The battery type is CR1220 (12 x 2.0mm, 3V); if you don’t have a battery you will need to short out the battery holder with some wire otherwise the IC will not work. Readers have reported that the IC doesn’t keep time if the USB and external power are both applied to the Arduino at the same time.

A device will have one or more registers where information is read from and written to. Look at page twelve of the DS3234 data sheet, there are twenty-three registers, each containing eight bits (one byte) of data. Please take note that each register has a read and write address. An example – to retrieve the contents of the register at location 08h (alarm minutes) and place it into the byte data we need to do the following:

Don’t forget to take note of  the function SPI.setBitOrder(MSBFIRST); in your sketch, as this also determines the bit order of the data coming from the device. To write data to a specific address is also quite simple, for example:

Up to this point, we have not concerned ourselves with what is called the SPI data mode. The mode determines how the SPI device interprets the ‘pulses’ of data going in and out of the device. For a well-defined explanation, please read this article. With some devices (and in our forthcoming example) the data mode needs to be defined. So we use:

to set the data mode, within void(setup);. To determine a device’s data mode, as always – consult the data sheet. With our DS3234 example, the mode is mentioned on page 1 under Features List.

Finally, let’s delve a little deeper into SPI via the DS3234. The interesting people at Sparkfun have already written a good demonstration sketch for the DS3234, so let’s have a look at that and deconstruct it a little to see what is going on. You can download the sketch below from here, then change the file extension from .c to .pde.

Don’t let the use of custom functions and loops put you off, they are there to save time. Looking in the function SetTimeDate();, you can see that the data is written to the registers 80h through to 86h (skipping 83h – day of week) in the way as described earlier (set CS low, send out address to write to, send out data, set CS high). You will also notice some bitwise arithmetic going on as well. This is done to convert data between binary-coded decimal and decimal numbers.

Why? Go back to page twelve of the DS3234 data sheet and look at (e.g.) register 00h/80h – seconds. The bits 7~4 are used to represent the ‘tens’ column of the value, and bits 3~0 represent the ‘ones’ column of the value. So some bit shifting is necessary to isolate the digit for each column in order to convert the data to decimal. For other ways to convert between BCD and decimal, see the examples using the Maxim DS1307 in chapter seven.

Finally here is another example of reading the time data from the DS3234:

So there you have it – more about the world of the SPI bus and how to control the devices within.

LEDborder

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, BOB-10160, dac, DS3234, education, learning electronics, lesson, MCP4162, MCP4921, microcontrollers, SPI, tutorial, UncategorizedComments (14)

Review – Texas Instruments TLC5940 16-channel LED driver IC

Hello readers

Today we are going to examine the Texas Instruments TLC5940 16-channel LED driver IC. My reason for doing this is to demonstrate another, easier way of driving many LEDs as well as LED display modules that are common-anode. If you have a common-cathode display module, you should have a look at the Maxim MAX7219. Moving along, here is the IC:

tlc5940sss

Another nice big DIP IC. Also available in HTSSOP and QFN packaging. What can this IC do for us? It can control 16 LEDs per IC, and also be cascaded to control more and more, with the display data arriving via a serial line in the same manner as a 74HC595 shift register. Furthermore, another benefit of this IC is that you don’t need matching current-limiting resistors for your LEDs, as this IC is a current sink, in that the current flows from the 5V rail, through the LED, then into the IC. However, it can control the brightness of the LEDs using pulse-width modulation over 4096 steps via software, or using a single resistor.

What is pulse-width modulation? Normally an LED might be on, or off. But if you switch it on and off very quickly, it does not look as bright (as it is not on 100% of the time). If you alter the period of time between on and off, you can alter the perceived brightness of the LED. Here is an example, compare the brightness of the LED bars against the display of the CRO – as the brightness increases, the voltage (amplitude [vertical thickness]) spreads across the entire time period (horizontal axis); as the brightness decreases, the voltage spread across time retreats:

Using the IC is very easy on the hardware front. Here is the data sheet: TLC5940.pdf. The pinout diagram is quite self-explanatory:

Pins OUT0~OUT15 are the current-sink pins for each LED. When one is selected they allow current to flow into the IC from the 5V rail, with the LED in between – turning it on. However it is easier to understand with a practical example, such as this:

tlc5940demo1schematic

If you are using an Arduino Mega-style board, the wiring is a little different, please see here for the instructions.

Here we have our Arduino board or compatible sending serial data to the TLC5940 to control sixteen LEDs. The 2k ohm resistor is required to set the maximum current available to flow through the LEDs, thereby adjusting their brightness. Using software you can adjust the brightness with PWM for each LED by itself. Very important: this circuit will need external power into the Arduino or a separate 5V power supply. The circuitry on the breadboard draws up to ~318 mA by itself – running the Arduino from USB only made it somewhat flaky in operation. Here is the circuit in action with an ammeter between the breadboard and 5V out on the Arduino:

Anyhow, let’s get moving once more – here is the assembled demonstration circuit:

tlc5940demo1bbs

For our example, we will be using the Arduino way of doing things. Thankfully (once more) there is a library to make controlling the IC exponentially easier. The library page and download files are available from here.  If you need guidance on installing a library, please visit here. However the commands to control the IC are quite simple with the Arduino library.

First of all, include the TLC5940 library, as such:

Then in void setup(); you create the object using the function:

You can insert a number between 0 and 4095 to set the starting PWM (LED brightness) value, however this is optional. Setting an output for display requires two functions, first Tlc.set(l, p); where l is the output (0~15) and p is the PWM brightness level – then execute Tlc.update(); which sends the command to the IC to be executed. The sketch below is easy to follow and understand the process involved.

Moving forward with the demonstration, here is the sketch  – TLC5940demo.pdf, and the video clip of operation:

When the LEDs are glowing from dim to bright and return, we are altering the PWM value of the LEDs to adjust their brightness. This also occurs during the last operation where the LEDs are operating like the bonnet of KITT.

Below is an example of TLC5940 use by JM – he has made an awesome RGB LED cube:

Well once again that’s enough blinkiness for now, again this is another useful IC that helps simplify things and be creative. As always, avoid the risk of counterfeit ICs  – so please avoid disappointment, support your local teams and buy from a reputable distributor. Living in Australia, mine came from element-14 (part number 1226306). So have fun! High resolution photos are available from flickr.

Remember, if you have any questions at all please leave a comment (below). We also have a Google Group dedicated to the projects and related items on the website – please sign up, it’s free and we can all learn something.

Posted in arduino, lesson, part review, tlc5940, tutorialComments (28)


Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: