Tag Archive | "sot-23"

Review – Schmartboard SMT Boards

In this article we review a couple of SMT prototyping boards from Schmartboard.


Sooner or later you’ll need to use a surface-mount technology component. Just like taxes and myki* not working, it’s inevitable. When the time comes you usually have a few options – make your own PCB, then bake it in an oven or skillet pan; get the part on a demo board from the manufacturer (expensive); try and hand-solder it yourself using dead-bug wiring or try to mash it into a piece of strip board; or find someone else to do it. Thanks to the people at Schmartboard you now have another option which might cost a few dollars more but guarantees a result. Although they have boards for almost everything imaginable, we’ll look at two of them – one for QFP packages and their Arduino shield that has SOIC and SOP23-6 areas.


QFP 32-80 pin board

In our first example we’ll see how easy it is to prototype with QFP package ICs. An example of this is the Atmel ATmega328 microcontroller found on various Arduino-compatible products, for example:


Although our example has 32 pins, the board can handle up to 80-pin devices. You simply place the IC on the Schmartboard, which holds the IC in nicely due to the grooved tracks for the pins:


The tracks are what makes the Schmartboard EZ series so great – they help hold the part in, and contain the required amount of solder. I believe this design is unique to Schmartboard and when you look in their catalogue, select the “EZ” series for this technology. Moving forward, you just need some water-soluble flux:


then tack down the part, apply flux to the side you’re going to solder – then slowly push the tip of your soldering iron (set to around 750 degrees F) down the groove to the pin. For example:

Then repeat for the three other sides. That’s it. If your part has an exposed pad on the bottom, there’s a hole in the centre of the Schmartboad that you can solder into as well:


After soldering I really couldn’t believe it worked, so probed out the pins to the breakout pads on the Schmartboard to test for shorts or breaks – however it tested perfectly. The only caveat is that your soldering iron tip needs to be the same or smaller pitch than the the part you’re using, otherwise you could cause a solder bridge. And use flux!  You need the flux. After soldering you can easily connect the board to the rest of your project or build around it.

Schmartboard Arduino shield

There’s also a range of Arduino shields with various SMT breakout areas, and we have the version with 1.27mm pitch SOIC and a SOT23-6 footprint. SOIC? For example:


This is the AD5204 four-channel digital potentiometer we used in the SPI tutorial. It sits nicely in the shield and can be easily soldered onto the board. Don’t forget the flux! Although the SMT areas have the EZ-technology, I still added a little solder of my own – with satisfactory results:

The SOT23-6 also fits well, with plenty of space for soldering it in. SOT23? Example – the ADS1110 16-bit ADC which will be the subject of a future tutorial:


Working with these tiny components is also feasible but requires a finer iron tip and a steady hand.


Once the SMT component(s) have been fitted, you can easily trace out the matching through-hole pads for further connections. The shield matches the Arduino R3 standards and includes stacking header sockets, two LEDs for general use, space and parts for an RC reset circuit, and pads to add pull-up resistors for the I2C bus:


Finally there’s also three 0805-sized parts and footprints for some practice or use. It’s a very well though-out shield and should prove useful. You can also order a bare PCB if you already have stacking headers to save money.


If you’re in a hurry to prototype with SMT parts, instead of mucking about – get a Schmartboard. They’re easy to use and work well.  Full-sized images available on flickr.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

The boards used in this article were a promotional consideration supplied by Schmartboard.


Posted in arduino, product review, review, safety, schmartboard, SMD, SMT, soic, soldering, sot-23, tqfp, tronixstuff, tutorialComments (2)

Experimenting with Surface-Mount Component Prototyping

Experimenting with hand-soldering SMT components.

Updated 18/03/2013

Now and again I have looked at SMT (surface-mount technology) components and thought to myself “I should try that one day”. But not wanting to fork out for a toaster oven and a bunch of special tools I did it on the cheap – so in this article you can follow along and see the results. Recently I ordered some ElecFreaks SOIC Arduino Mega-style protoshields which apart from being a normal double-sided protoshield, also have a SOIC SMT pad as shown below:

First up I soldered in two SOIC format ICs – a 555 and a 4017:

These were not that difficult – you need a steady hand, a clean soldering iron tip and some blu-tac. To start, stick down the IC as such:

… then you can … very carefully … hand-solder in a few legs, remove the blu tac and take care of the rest …

The 4017 went in easily as well…

…however it can be easier to flood the pins with solder, then use solder-wick to soak up the excess – which in theory will remove the bridges between pins caused by the excess solder. And some PCB cleaner to get rid of the excess flux is a good idea as well.

Now to some smaller components – some LEDs and a resistor. These were 0805 package types, which measure 2.0 × 1.3 mm – for example a resistor:

The LEDs were also the same size. Unlike normal LEDs, determining the anode and cathode can be difficult – however my examples had a small arrow determining current flow (anode to cathode) on the bottom:

Another way is to use the continuity function of a multimeter – if their output voltage is less than the rating of the LED, you can probe it to determine the pins. When it glows, the positive lead is the anode. Handling such small components requires the use of anti-magnetic tweezers – highly recommended…

… and make holding down the components with one hand whilst soldering with the other much, much easier. Unlike normal veroboard, protoshield or other prototyping PCBs the protoshield’s holes are surrounded with a “clover” style of solder pad, for example:

These solder pads can make hand-soldering SMT parts a little easier. After some experimenting, I found the easiest way was to first flood the hold with solder:

… then hold down the component with the tweezers with one hand while heating the solder with the other – then moving and holding one end of the component into the molten solder:

The first time (above) was a little messy, but one improves with practice. The clover-style of the solder pads makes it easy to connect two components, for example:

With some practice the procedure can become quite manageable:

As the protoshields are double-sided you can make connections between components on the other side to keep things neat for observers. To complete the experiment the six LEDs were wired underneath (except for one) to matching Arduino Mega digital output pins, and a simple demonstration sketch used to illuminate the LEDs, as shown below:

For one-off or very low-volume SMD work these shields from elecfreaks are quite useful. You will need a steady hand and quite a lot of patience, but if the need calls it would be handy to have some of these boards around just in case. For a more involved and professional method of working with SMT, check out this guide by Jon Oxer.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in 555, education, elecfreaks, learning electronics, SMD, soldering, tutorialComments (6)

Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: