Tag Archives: text

Review – adafruit industries Mini 8×8 LED Matrix with I2C backpack


In this review we have a look at the mini 8×8 LED matrix with I2C backpack from adafruit industries. It looked like a small yet versatile display unit for a couple of project ideas, so as part of the evaluation we’ll run through it with you here. As you can see below, it’s quite small with a 20mm square matrix:


The matrix and the controller are seperate which gives you the option of ordering different colours of matrix. Using LED matrices can be a pain, however these units use the Holtek 16K33 controller IC (data sheet) which has an I2C interface – much easier than the usual mess of shift registers and I/O pins:


 Furthermore you can change the I2C address using the solder pads on the PCB, giving you four possible options. And as it’s I2C, you can use it with other microcontrollers with a little detective work. Moving forward, we’ll assemble the display then explain how to use it with an Arduino, and show a few demonstrations.


There really isn’t anything major to do, just solder the matrix to the backpack and some header pins if you need them. adafruit include some however I’m using the 90-degree ones for my own use:


The soldering should take about one minute tops, and then you’re done:


Using the matrix

From a hardware perspective you only have four wires – 5V, GND, SDA and SCL. Yes – it’s a 5V part, so all you Raspberry Pi fans will need a level shifter, which you can get from adafruit as well. Anyhow once you’ve got it connected to your Arduino, a couple of libraries are required – the matrix and GFX libraries. Be sure to install them in your sketchbook/libraries folder and not the usual location. When saving the library files, call the first folder Adafruit_LEDBackpack and the second Adafruit_GFX as they don’t arrive in that format.

Now for a quick demonstration, it’s simply one from the included library. The display is very bright, so I had to reduce the exposure on the camera which makes the background a little dark – but you get the idea:

A pair of those fitted to a dummy or doll would be quite interesting, or make good eyes for a 21st century “Metal Mickey”. Well that’s quite interesting, so how do you in fact display things on the matrix? I’ve deconstructed a few examples to show you how it’s done.

No matter what, you need to include the libraries, define the matrix object in the sketch and then start it with the matching I2C address – for example:

To scroll text across the display, modify the following chunk of code:

First, the setRotation() value is 0~3 and determines which way the text scrolls across the screen. This is useful if you mount the matrix in different positions, as you can still keep the text scrolling in a readable manner. Next, matrix.setTextWrap() – leave this as false,  as true displays each character and then just scrolls it in turn – looking rather odd. Now multiply the number of characters you want to display by 8, and replace the number -96 with negative your value and of course “Hello, world”. Finally follow with rest of the code. There’s a quick demonstration of this code in the sketch and video below:


Now for some graphics. You can define your own images (!) and store them in an array. Each arrays consists of eight bytes, each representing a row of the matrix. You can use binary to help visualise the results, for example:

and then to display that on the matrix, use the following:

… which resulted with:


To control individual pixels, send one or more of the following:

where x and y are the pixel’s coordinates (that fall between zero and seven), followed by:

Here’s a neat example sketch and video of a single pixel “running around the border”:

By this point you should be getting the hang of things now, so we’ll finish up with the last three graphic functions at once. To draw a line between x1, y1 and x2, y2 – use:

To draw a rectangle with corners at x1, y2, x2, y2 – use:

To draw a filled rectangle with corners at x1, y2, x2, y2 – use:

And to draw a circle with axis at x,y and a radius of r pixels – use:

Now we’ll put those functions into the following sketch and video:


If you want to get someone’s attention, you can blink whatever’s on the matrix at various frequencies – and of course turn it off. In the following function, use 0 for off, and 1~3 for different rates:

Finally, you can also adjust the brightness to one of sixteen levels (0~15) using:

That’s enough blinkiness for now. Remember the library is just shielding you from the raw I2C commands, so if you want to create your own functions or use a non-Arduino board – examine the library and the data sheet.


The backpack makes using the matrix an absolute breeze, and the library saves a lot of time and effort – leaving you to get on with creating your ideas into projects. You can get the matrix from adafruit and their distributors.

Full-sized images available on flickr.  And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

[Note – item purchased without notifying the supplier]

Project: Clock Four – Scrolling text clock


Time for another instalment in my highly-irregular series of irregular clock projects.  In this we have “Clock Four” – a scrolling text clock. After examining some Freetronics Dot Matrix Displays in the stock, it occurred to me that it would be neat to display the time as it was spoken (or close to it) – and thus this the clock was born. It is a quick project – we give you enough to get going with the hardware and sketch, and then you can take it further to suit your needs.


You’ll need three major items – An Arduino Uno-compatible board, a real-time clock circuit or module using either a DS1307 or DS3232 IC, and a Freetronics DMD. You might want an external power supply, but we’ll get to that later on.

The first stage is to fit your real-time clock. If you are unfamiliar with the operation of real-time clock circuits, check out the last section of this tutorial. You can build a RTC circuit onto a protoshield or if you have a Freetronics Eleven, it can all fit in the prototyping space as such:

If you have an RTC module, it will also fit in the same space, then you simply run some wires to the 5V, GND, A4 (for SDA) and A5 (for SCL):

By now I hope you’re thinking “how do you set the time?”. There’s two answers to that question. If you’re using the DS3232 just set it in the sketch (see below) as the accuracy is very good, you only need to upload the sketch with the new time twice a year to cover daylight savings (unless you live in Queensland). Otherwise add a simple user-interface – a couple of buttons could do it, just as we did with Clock Two. Finally you just need to put the hardware on the back of the DMD. There’s plenty of scope to meet your own needs, a simple solution might be to align the control board so you can access the USB socket with ease – and then stick it down with some Sugru:

With regards to powering the clock – you can run ONE DMD from the Arduino, and it runs at a good brightness for indoor use. If you want the DMD to run at full, retina-burning brightness you need to use a separate 5 V 4 A power supply. If you’re using two DMDs – that goes to 8 A, and so on. Simply connect the external power to one DMD’s terminals (connect the second or more DMDs to these terminals):

The Arduino Sketch

You can download the sketch from here. Please use IDE v1.0.1 . The sketch has the usual functions to set and retrieve the time from DS1307/3232 real-time clock ICs, and as usual with all our clocks you can enter the time information into the variables in void setup(), then uncomment setDateDs1307(), upload the sketch, re-comment setDateDs1307, then upload the sketch once more. Repeat that process to re-set the time if you didn’t add any hardware-based user interface.

Once the time is retrieved in void loop(), it is passed to the function createTextTime(). This function creates the text string to display by starting with “It’s “, and then determines which words to follow depending on the current time. Finally the function drawText() converts the string holding the text to display into a character variable which can be passed to the DMD.

And here it is in action:


This was a quick project, however I hope you found it either entertaining or useful – and another random type of clock that’s easy to reproduce or modify yourself. We’re already working on another one which is completely different, so stay tuned.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Tutorial: Control AC outlets via SMS

Learn how to control AC outlets via SMS text message. This is chapter thirty-three of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – A tutorial on the Arduino universe. The first chapter is here, the complete series is detailed here.

Updated 02/03/2013

Assumed understanding for this article is found in part one. If you have not already done so, please read and understand it.

In this chapter we will continue with the use of the SM5100 cellular shield to turn digital outputs on and off via SMS. However please read chapters twenty-six and twenty-seven first if you are unfamiliar with using the GSM shield with Arduino. As an extension of chapter twenty-seven, we will use our Arduino to turn on or off AC outlets via a common remote-control AC outlet pack. Please note this is more of a commentary of my own experience, and not an exact tutorial. In other words, by reading this I hope you will gain some ideas into doing the necessary modifications yourself and in your own way.

Firstly, we need some remote-control AC outlets. Most electrical stores or giant retail warehouses may have something like this:


Nothing too original, just a wireless remote control that can switch on or off receiver outlets on a choice of four radio frequencies. Before moving forward I would like to acknowledge that this article was inspired by the wonderful book Practical Arduino – Cool Projects for Open Source Hardware by Jon Oxer and Hugh Blemings. In chapter two an appliance remote-control system is devised using a similar system.

At first glance the theory behind this project is quite simple – using the hardware in example 27.2, instead of controlling LEDs, activate the buttons on the wireless remote control for the AC outlets – leaving us with AC outlets controlled via SMS. However there are a few things to keep in mind and as discovered during the process, various pitfalls as well.

Before voiding the warranty on your remote control, it would be wise to test the range of the remote control to ensure it will actually work in your situation. I found this was made a lot easier by connecting a radio to the remote outlet – then you can hear when the outlet is on or off. If this is successful, make a note of the amount of time required to press the on and off buttons – as we need to control the delay in our Arduino sketch.

The next step is to crack open the remote control:


… and see what we have to work with:


Straight away there are two very annoying things – the first being the required power supply – 12 volts; and the second being the type of button contacts on the PCB. As you can see above we only have some minute PCB tracks to solder our wires to. It would be infinitely preferable to have a remote control that uses actual buttons soldered into a PCB, as you can easily desolder and replace them with wires to our Arduino system. However unless you can casually tear open the remote control packaging in the store before purchase, it can be difficult to determine the type of buttons in the remote.

As you can see in the photo above, there is an off and on pad/button each for four channels of receiver. In my example we will only use two of them to save time and space. The next question to solve is how to interface the Arduino digital outputs with the remote control. In Practical Arduino, the authors have used relays, but I don’t have any of those in stock. However I do have a quantity of common 4N25 optocouplers, so will use those instead. An optocoupler can be thought of as an electronic switch that is isolated from what is it controlling – see my article on optocouplers for more information.

Four optocouplers will be required, two for each radio channel. To mount them and the associated circuitry, we will use a blank protoshield and build the Arduino-remote control interface onto the shield. The circuitry for the optocoupler for each switch is very simple, we just need four of the following:

As the LED inside the optocoupler has a forward voltage of 1.2 volts at 10mA, the 390 ohm resistor is required as our Arduino digital out is 5 volts. Dout is connected to the particular digital out pin from the Arduino board. Pins 4 and 5 on the optocoupler are connected to each side of the button contact on our remote control.

The next consideration is the power supply. The remote control theoretically needs 12 volts, however the included battery only measured just over nine. However for the optimum range, the full 12 should be supplied. To save worrying about the battery, our example will provide 12V to the remote control. Furthermore, we also need to supply 5 volts at a higher current rating that can be supplied by our Arduino. In the previous GSM chapters, I have emphasised that the GSM shield can possibly draw up to two amps in current. So once again, please ensure your power supply can deliver the required amount of current. From experience in my location, I know that the GSM shield draws around 400~600 milliamps of current – which makes things smaller and less complex.

The project will be supplied 12 volts via a small TO-92 style 78L12 regulator, and 5 volts via a standard TO-220 style 7805 regulator. You could always use a 7812, the 78L12 was used as the current demand is lower and the casing is smaller. The power for the whole project will come from a 15V DC 1.5A power supply. So our project’s power supply schematic will be as follows:

Now to mount the optocouplers and the power circuitry on the blank protoshield. Like most things in life it helps to make a plan before moving forward. I like to use graph paper, each square representing a hole on the protoshield, to plan the component layout. For example:

It isn’t much, but it can really help. Don’t use mine – create your own, doing so is good practice. After checking the plan over, it is a simple task to get the shield together. Here is my prototype example:


It isn’t neat, but it works. The header pins are used to make connecting the wires a little easier, and the pins on the right hand side are used to import the 15V and export 12V for the remote. While the soldering iron is hot, the wires need to be soldered to the remote control. Due to the unfortunate size of the PCB tracks, there wasn’t much space to work with:


But with time and patience, the wiring was attached:


Again, as this is a prototype the aesthetics of the modification are not that relevant. Be careful when handling the remote, as any force on the wiring can force the soldered wire up and break the PCB track. After soldering each pair of wires to the button pads, use the continuity function of a multimeter to check for shorts and adjust your work if necessary.

At this stage the AC remote control shield prototype is complete. It can be tested with a simple sketch to turn on and off the related digital outputs. For example, the following sketch will turn on and off each outlet in sequence:

Now to get connected with our GSM shield. It is a simple task to insert the remote shield over the GSM shield combination, and to connect the appropriate power supply and (for example) GSM aerial. The control sketch is a slight modification of example 27.2, and is shown below

The variable pressdelay stores the amount of time in milliseconds to ‘press’ a remote control button. To control our outlets, we send a text message using the following syntax:

Where a/b are remote channels one and two, and x is replaced with 0 for off and 1 for on.

So there you have it – controlling almost any AC powered device via text message from a cellular phone. Imagine trying to do that ten, or even five years ago. As always, now it is up to you and your imagination to find something to control or get up to other shenanigans.


Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Tutorial: Arduino and GSM Cellular – Part Two

Continue to learn about connecting your Arduino to the cellular network with the SM5100 GSM module shield. This is chapter twenty-seven of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – A tutorial on the Arduino universe. The first chapter is here, the complete series is detailed here.

Updated 02/03/2013

Assumed understanding for this article is found in part one. If you have not already done so, please read and understand it. In this instalment we continue with bare projects which you can use as a framework for your own creations.

Reach out and control something

First we will discuss how to make something happen by a simple telephone call. And the best thing is that we don’t need the the GSM module to answer the telephone call (thereby saving money) – just let the module ring a few times. How is this possible? Very easily. Recall example 26.1 – we monitored the activity of the GSM module by using our terminal software. In this case what we need to do is have our Arduino examine the text coming in from the serial output of the GSM module, and look for a particular string of characters.

When we telephone the GSM module from another number, the module returns the text as shown in the image below:


We want to look for the text “RING”, as (obviously) this means that the GSM shield has recognised the ring signal from the exchange. Therefore need our Arduino to count the number of rings for the particular telephone call being made to the module. (Memories – Many years ago we would use public telephones to send messages to each other. For example, after arriving at a foreign destination we would call home and let the phone ring five times then hang up – which meant we had arrived safely). Finally, once the GSM shield has received a set number of rings, we want the Arduino to do something.

From a software perspective, we need to examine each character as it is returned from the GSM shield. Once an “R” is received, we examine the next character. If it is an “I”, we examine the next character. If it is an “N”, we examine the next character. If it is a “G”, we know an inbound call is being attempted, and one ring has occurred. We can set the number of rings to wait until out desired function is called. In the following example, when the shield is called, it will call the function doSomething() after three rings.

The function doSomething() controls two LEDs, one red, one green. Every time the GSM module is called for 3 rings, the Arduino alternately turns on or off the LEDs. Using this sketch as an example, you now have the ability to turn basically anything on or off, or call your own particular function. Another example would be to return some type of data, for example you could dial in and have the Arduino send you a text message containing temperature data.

And now for a quick video demonstration. The first call is made, and the LEDs go from red (off) to green (on). A second call is made, and the LEDs go from green (on) to red (off). Although this may seem like an over-simplified example, with your existing Ardiuno knowledge you now have the ability to run any function by calling your GSM shield.

Control Digital I/O via SMS

Now although turning one thing on or off is convenient, how can we send more control information to our GSM module? For example, control four or more digital outputs at once? These sorts of commands can be achieved by the reception and analysis of text messages.

Doing so is similar to the method we used in example 27.1. Once again, we will analyse the characters being sent from the GSM module via its serial out. However, there are two AT commands we need to send to the GSM module before we can receive SMSs, and one afterwards. The first one you already know:

Which sets the SMS mode to text. The second command is:

This command tells the GSM module to immediately send any new SMS data to the serial out. An example of this is shown in the terminal capture below:


Two text messages have been received since the module was turned on. You can see how the data is laid out. The blacked out number is the sender of the SMS. The number +61418706700 is the number for my carrier’s SMSC (short message service centre). Then we have the date and time. The next line is the contents of the text message – what we need to examine in our sketch.

The second text message in the example above is how we will structure our control SMS. Our sketch will wait for a # to come from the serial line, then consider the values after a, b, c and d – 0 for off, 1 for on. Finally, we need to send one more command to the GSM module after we have interpreted our SMS:

This deletes all the text messages from the SIM card. As there is a finite amount of storage space on the SIM, it is prudent to delete the incoming message after we have followed the instructions within. But now for our example. We will control four digital outputs, D9~12. For the sake of the exercise we are controlling an LED on each digital output, however you could do anything you like. Although the sketch may seem long and complex, it is not – just follow it through and you will see what is happening:

And now for a video demonstration:

So there you have it – controlling your Arduino digital outputs via a normal telephone or SMS. Now it is up to you and your imagination to find something to control, sensor data to return, or get up to other shenanigans.

If you enjoyed this article, you may find this of interest – controlling AC power outlets via SMS.


Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Tutorial – Arduino Uno and SM5100B GSM Cellular

Shield is now obsolete. Contact your hardware supplier for support.