Tag Archive | "TI"

Tutorial – Arduino and the TLC5940 PWM LED Driver IC

Use the Texas Instruments TLC5940 16-Channel LED Driver IC with Arduino in Chapter 57 of our Arduino Tutorials. The first chapter is here, the complete series is detailed here.

Introduction

Today we are going to examine the Texas Instruments TLC5940 16-channel LED driver IC. Our reason for doing this is to demonstrate another, easier way of driving many LEDs – and also servos.  First up, here is a few examples of the TLC5940

TLC5940

The TLC5940 is available in the DIP version above, and also surface-mount. It really is a convenient part, allowing you to adjust the brightness of sixteen individual LEDs via PWM (pulse-width modulation) – and you can also daisy-chain more than one TLC5940 to control even more.

During this tutorial we’ll explain how to control one or more TLC5940 ICs with LEDs and also look at controlling servos. At this point, please download a copy of the TLC5940_data_sheet (.pdf) as you will refer to it through this process. Furthermore, please download and install the TLC5940 Arduino library by Alex Leone which can be found here. If you’re not sure how to install a library, click here.

Build a TLC5940 demonstration circuit

The following circuit is the minimum required to control sixteen LEDs from your Arduino or compatible. You can use it to experiment with various functions and get an idea of what is possible. You will need:

  • An Arduino Uno or compatible board
  • 16 normal, everyday LEDs that can have a forward current of up to 20 mA
  • a 2 kΩ resistor (give or take 10%)
  • a 0.1uF ceramic and a 4.7uF electrolytic capacitor

Take note of the LED orientation – and remember the TLC5940 is a common-anode LED driver – so all the LED anodes are connected together and then to 5V:

TLC5940 Arduino circuit

For this particular circuit, you won’t need an external 5V power supply – however you may need one in the future. The purpose of the resistor is to control the amount of current that can flow through the LEDs. The required resistor value is calculated with the following formula:

R = 39.06 / Imax

where R (in Ohms)  is the resistor value and Imax (in Amps) is the maximum amount of current you want to flow through the LEDs. For example, if you have LEDs with a 20 mA forward current – the resistor calculation would be:

R = 39.06 / 0.02 = 1803 Ohms.

Once you have the circuit assembled – open up the Arduino IDE and upload the sketch BasicUse.pde  which is in the example folder for the TLC5940 library. You should be presented with output similar to what is shown in the following video:

Controlling the TLC5940

Now that the circuit works, how do we control the TLC5940? First, the mandatory functions – include the library at the start of the sketch with:

and then initialise the library by placing the following into void setup():

x is an optional parameter – if you want to set all the channels to a certain brightness as soon as the sketch starts, you can insert a value between 0 and 4095 for in the Tlc.init() function.

Now to turn a channel/LED on or off. Each channel is numbered from 0 to 15, and each channel’s brightness can be adjusted between 0 and 4095.

This is a two-part process…

First – use one or more of the following functions to set up the required channels and respective brightness (PWM level):

For example, if you wanted to have the first three channels on at full brightness, use:

The second part is to use the following to update the TLC5940 with the required instructions from part one:

If you want to turn off all channels at once, simply use:

You don’t need to call a TLC.update() after the clear function. The following is a quick example sketch that sets the brightness/PWM values of all the channels to different levels:

and the sketch in action:

The ability to control individual brightness for each channel/LED can also be useful when controlling RGB LEDs – you can then easily select required colours via different brightness levels for each element.

Using two or more TLC5940s

You can daisy-chain quite a few TLC5940s together to control more LEDs. First – wire up the next TLC5940 to the Arduino as shown in the demonstration circuit – except connect the SOUT pin (17) of the first TLC5940 to the SIN pin (26) of the second TLC5940 – as the data travels from the Arduino, through the first TLC5940 to the second and so on. Then repeat the process if you have a third, etc. Don’t forget the resisotr that sets the current!

Next, open the file tlc_config.h located in the TLC5940 library folder. Change the value of NUM_TLCS to the number of TLC5940s you have connected together, then save the file and also delete the file Tlc5940.o also located in the same folder. Finally restart the IDE. You can then refer to the channels of the second and further TLC5940 sequentially from the first. That is, the first is 0~15, the second is 16~29, and so on.

Controlling servos with the TLC5940

As the TLC5940 generates PWM (pulse-width modulation) output, it’s great for driving servos as well. Just like LEDs – you can control up to sixteen at once. Ideal for creating spider-like robots, strange clocks or making some noise. When choosing your servo, ensure that it doesn’t draw more than 120 mA when operating (the maximum current per channel) and also heed the “Managing current and heat” section at the end of this tutorial. And use external power with servos, don’t rely on the Arduino’s 5V line.

To connect a servo is simple – the GND line connects to GND, the 5V (or supply voltage lead) connects to your 5v (or other suitable supply) and the servo control pin connects to one of the TLC5940’s outputs. Finally – and this is important – connect a 2.2kΩ resistor between the TLC5940 output pin(s) being used and 5V.

Controlling a servo isn’t that different to an LED. You need the first two lines at the start of the sketch:

then the following in void setup():

Next, use the following function to select which servo (channel) to operate and the required angle (angle):

Just like the LEDs you can bunch a few of these together, and then execute the command with:

So let’s see all that in action. The following example sketch sweeps four servos across 90 degrees:

And the following video captures those four servos in action:

 

If you servos are not rotating to the correct angle – for example you ask for 180 degrees and they only rotate to 90 or thereabouts, a little extra work is required. You need to open the tlc_servos.h file located in the TLC5940 Arduino library folder and experiment with the values for SERVO_MIN_WIDTH and SERVO_MAX_WIDTH. For example change SERVO_MIN_WIDTH from 200 to 203 and SERVO_MAX_WIDTH from 400 to 560.

Managing current and heat 

As mentioned earlier, the TLC5940 can handle a maximum of 120 mA per channel. After some experimenting you may notice that the TLC5940 does get warm – and that’s ok. However there is a maximum limit to the amount of power that can be dissipated before destroying the part. If you are just using normal garden-variety LEDs or smaller servos, power won’t be a problem. However if you’re planning on using the TLC5940 to the max – please review the notes provided by the library authors.

Conclusion

Once again you’re on your way to controlling an incredibly useful part with your Arduino. Now with some imagination you can create all sorts of visual displays or have fun with many servos. And if you enjoyed the tutorial, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a third printing!) “Arduino Workshop” from No Starch Press.

tronixstuff

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, BOB-10616, COM-10136, LED, PWM, servo, TI, tlc5940, tronixstuff, tutorialComments (15)

Tutorial – LM3914 Dot/Bar Display Driver IC

Introduction

This is the first of three tutorials that will examine the LM391x series of LED driver ICs. In this first tutorial we cover the LM3914, then the LM3915 and LM3916 will follow. The goal of these tutorials is to have you using the parts in a small amount of time and experiment with your driver ICs, from which point you can research further into their theory and application.

Although these parts have been around for many years, the LM3914 in particular is still quite popular. It offers a simple way to display a linear voltage level using one or more groups of ten LEDs with a minimum of fuss.

With a variety of external parts or circuitry these LEDs can then represent all sorts of data, or just blink for your amusement. We’ll run through a few example circuits that you can use in your own projects and hopefully give you some ideas for the future. Originally by National Semiconductor, the LM391X series is now handled by Texas Instruments.

LM3914

Getting Started

You will need the LM3914 data sheet, so please download that and keep it as a reference. So – back to basics. The LM3914 controls ten LEDs. It controls the current through the LEDs with the use of only one resistor, and the LEDs can appear in a bar graph or single ‘dot’ when in use. The LM3914 contains a ten-stage voltage divider, each stage when reached will illuminate the matching LED (and those below it in level meter mode).

Let’s consider the most basic of examples (from page two of the data sheet) – a voltmeter with a range of 0~5V:

 LM3914 5V voltmeter circuit

The Vled rail is also connected to the supply voltage in our example. Pin 9 controls the bar/dot display mode – with it connected to pin 3 the LEDs will operate in bar graph mode, leave it open for dot mode. The 2.2uF capacitor is required only when “leads to the LED supply are 6″ or longer”. We’ve hooked up the circuit above, and created a 0~5V DC source via a 10kΩ potentiometer with a multimeter to show the voltage – in the following video you can see the results of this circuit in action, in both dot and bar graph mode:

Customising the upper range and LED current

Well that was exciting, however what if you want a different reference voltage? That is you want your display to have a range of 0~3 V DC? And how do you control the current flow through each LED? With maths and resistors. Consider the following formulae:

LM3914 formulae

As you can see the LED current (Iled) is simple, our example is 12.5/1210 which returned 10.3 mA – and in real life 12.7 mA (resistor tolerance is going to affect the value of the calculations).

Now to calculate a new Ref Out voltage – for example  we’ll shoot for a 3 V meter, and keep the same current for the LEDs. This requires solving for R2 in the equation above, which results with R2 = -R1 + 0.8R1V. Substituting the values – R2 = -1210 + 0.8 x 1210 x 3 gives a value of 1694Ω for R2. Not everyone will have the E48 resistor range, so try and get something as close as possible. We found a 1.8 kΩ for R2 and show the results in the following video:

You can of course have larger display range values, but a supply voltage of no more than 25 V will need to be equal to or greater than that value. E.g. if you want a 0~10 V display, the supply voltage must be >= 10V DC.

Creating custom ranges

Now we’ll look at how to create  a lower range limit, so you can have displays that (for example) can range from a non-zero positive value. For example, you want to display levels between 3 and 5V DC. From the previous section, you know how to set the upper limit, and setting the lower limit is simple – just apply the lower voltage to pin 4 (Rlo).

You can derive this using a resistor divider or other form of supply with a common GND. When creating such circuits, remember that the tolerance of the resistors used in the voltage dividers will have an affect on the accuracy. Some may wish to fit trimpots, which after alignment can be set permanently with a blob of glue.

Finally, for more reading on this topic – download and review the TI application note.

Chaining multiple LM3914s

Two or more LM3914s can be chained together to increase the number of LEDs used to display the levels over an expanded range. The circuitry is similar to using two independent units, except the REFout (pin 7) from the first LM3914 is fed to the REFlo (pin 4) of the second LM3914 – whose REFout is set as required for the upper range limit. Consider the following example schematic which gave a real-world range of 0~3.8V DC:

LM3914

The 20~22kΩ resistor is required if you’re using dot mode (see “Dot mode carry” in page ten of the data sheet). Moving on, the circuit above results with the following:

Where to from here?

Now you can visually represent all sorts of low voltages for many purposes. There’s more example circuits and notes in the LM3914 data sheet, so have a read through and delve deeper into the operation of the LM3914. Furthermore Dave Jones from eevblog.com has made a great video whcih describes a practical application of the LM3914:

Conclusion

As always I hope you found this useful. Don’t forget to stay tuned for the second and third instalments using the LM3915 and LM3916. Full-sized images are on flickr. And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in electronics, LED, LM3914, TI, tronixstuff, tutorial, voltmeterComments (0)

Kit review – Altronics/Silicon Chip DC to DC Converter

Introduction

Every month Australian electronics magazine Silicon Chip publishes a variety of projects, and in March 2004  they published the “DC-DC converter” project. Altronics picked it up and now offers a kit, the subject of our review. The main purpose of this converter kit is to allow replacement of expensive PP3 9V batteries with 2 AA cells, to enable a cheaper and longer lifespan over use. With a slight modification it can also act as a trickle-charger for 2 rechargeable AA cells (that can then supply power to the converter) via a plugpack. And there’s some educational value if you’re so inclined, as you can learn about voltage converters as well.

Assembly

As usual for Altronics the kit is in a typical retail package:

packaged

…which includes the detailed instructions (based on the original Silicon Chip article), a handy reference guide and of course the parts:

contents

The PCB has a good silk screen and solder mask:

pcbtop

pcbbottom

and all the required parts are included:

components

It was nice to see plenty of extra black and red wire for modifications or final installations, the battery snap, 2 x AA cell holder and a DC socket for use with the optional plug pack mentioned earlier. That hand-wound inductor was interesting, and I couldn’t help but measure it on the LC meter:

lcmeter

It was supposed to be a 47 uH inductor, so let’s hope that doesn’t cause too much trouble. Assembly was quite straight-forward – just start with the smallest components first and build up. If you’re not going to have the trickle-charge function, heed the notes in the manual and don’t install D2 or R4. The only fiddly bit was the “short as possible” (red) link across the board:

longlink

And after a few more minutes it was finished. The external connections will vary depending on your application – however for the review I’ve got the 9V snap on the input, which makes it easy to connect the 2 AA cell holder to power the converter. Nice to see the holes around the perimeter of the board, which make mounting it more permanently quite easy.

Operation

After a bench clean-up it was time to connect 2 AA rechargeable cells and see what we can get out of the converter. The cells measured 2.77V together before connection, and without a load on the converter the resulting output was 8.825 V:

firsttest

We can live with that. Furthermore the quiescent current (a situation with the power connected and not having a load on the output) was 2.5 mA. Thus it would be a good idea to have a power switch in a real-world environment. Speaking of the real world (!) how much current can you get out of the converter? Generally PP3 battery applications are low current, as the battery itself isn’t good for that much – even an expensive “Energizer Ultimate Lithium” offers only 800 mAh (for $16). So using higher-capacity rechargeable AA cells and this kit will save money.  A table is included with the instructions that shows the possible uses:

tableofuse

According to the table my 2.77V supply should be good for ~80 mA. With some resistors in parallel we made a dummy load of 69 mA and measured 0.37A current draw from the AA cells. Thus the key to this kit – you find a cheaper or more plentiful power supply at a lower voltage to save you the expense of providing the higher voltage.

For example, if you had a pair of Sanyo Eneloop rechargeable AA cells (total 2.4 V at 2 Ah) they would give you around 5.4 hours of life (ignoring the fall-off of voltage towards the end of their charge life – however the eneloops are pretty good in that regard). Whereas a disposable PP3 mentioned earlier would offer around 2.1 hours (at $16) or a rechargeable unit (which offers 8.4 V at 175 mAh) would only last around 25 minutes. Note that you can change two resistors in the circuit to alter the output voltage, and the values have been listed in the instructions for outputs up to 15 V.

Finally, let’s consider the output waveforms from the circuit. With the aforementioned load, here’s the output on the DSO:

output

… and for interest’s sake, the switching output from the TL499:

switchoutput

switchoutputdata

Conclusion

Apart from the described voltage-boosting functions this kit gives the interested builder experience with boost circuits and also the knowledge to create their own versions based on the original design, at a much lower cost than using other boost ICs . If you wanted a permanent certain voltage output, it would be better to breadboard the kit and experiment with the required resistors – then assemble the kit with the new values. And there is money and effort to be saved when subsituting with PP3 batteries. Finally, learning is a good thing!

So – a lot of fun and education for under $20. Purchase it from Altronics and their resellers, or read more about it in the September 2007 edition of Silicon Chip.

Full-sized images available on flickr. This kit was purchased without notifying the supplier.

And if you made it this far – check out my new book “Arduino Workshop” from No Starch Press.

LEDborder

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in altronics, boost, converter, dc dc, K6330, kit review, learning electronics, silicon chip, tronixstuffComments (0)

Tutorial – Arduino and the TI ADS1110 16-bit ADC

Learn how to use the TI ADS1110 16-bit ADC with Arduino in chapter fifty-three of my Arduino Tutorials. The first chapter is here, the complete series is detailed here.

Updated 02/07/2013

Introduction

Moving on from the last chapter where we explained an 8-bit ADC, in this instalment we have the Texas Instruments ADS1110 – an incredibly tiny but useful 16-bit analogue-to-digital converter IC.  It can operate between 2.7 and 5.5 V so it’s also fine for Arduino Due and other lower-voltage development boards. This is a quick guide to get you going with the ADS1110 ready for further applications. Before continuing any further, please download the data sheet (pdf) as it will be useful and referred to during this tutorial. The ADS1110 gives you the option of a more accurate ADC than offered by the Arduino’s 10-bit ADCs – and it’s relatively easy to use. The only block for some is the package type – it’s only available in SOT23-6:

So unless you’re making a customised PCB, some sort of breakout will be required. One useful example is the Schmartboard we reviewed earlier:

ads1110schmartboard

The ADS1110 uses the I2C bus for communication, so if this is new to you – please review the I2C tutorials before continuing. And as there’s only six pins you can’t set the bus address – instead, you can select from six variants of the ADS1110 – each with their own address (see page two of the data sheet). As you can see the in the photo above, ours is marked “EDO” which matches to the bus address 1001000 or 0x48h. And with the example circuits we’ve used 10kΩ pull-up resistors on the I2C bus. You can use the ADS1110 as either a single-ended or differential ADC –  But first we need to examine the configuration register which is used to control various attributes, and the data register.

Configuration register

Turn to page eleven of the data sheet. The configuration register is one byte in size, and as the ADS1110 resets on a power-cycle – you need to reset the register if your needs are different to the defaults. The data sheet spells it out quite neatly… bits 0 and 1 determine the gain setting for the PGA (programmable gain amplifier). If you’re just measuring voltages or experimenting, leave these as zero for a gain of 1V/V. Next, the data rate for the ADS1110 is controlled with bits 2 and 3. If you have continuous sampling turned on, this determines the number of samples per second taken by the ADC.

After some experimenting with an Arduino Uno we found the values returned from the ADC were a bit off when using the fastest rate, so leave it as 15 SPS unless required otherwise. Bit 4 sets either continuous sampling (0) or one-off sampling (1). Ignore bits 5 and 6, however they’re always set as 0. Finally bit 7 – if you’re in one-off sampling mode, setting it to 1 requests a sample – and reading it will tell you if the returned data is new (0) or old (1). You can check that the value measured is a new value – if the first bit of the configuration byte that comes after the data is 0, it’s new. If it returns 1 the ADC conversion hasn’t finished.

Data register

As the ADS1110 is a 16-bit ADC, it returns the data over two bytes – and then follows with the value of the configuration register. So if you request three bytes the whole lot comes back. The data is in “two’s complement” form, which is a method of using signed numbers with binary. Converting those two bytes is done by some simple maths. When sampling at 15 SPS, the value returned by the ADS1110 (not the voltage)  falls between -32768 and 32767. The higher byte of the value is multiplied by 256, then added to the lower byte – which is then multiplied by 2.048 and finally divided by 32768. Don’t panic, as we do this in the example sketch below.

Single-ended ADC mode

In this mode you can read a voltage that falls between zero and 2.048 V (which also happens to be the inbuilt reference voltage for the ADS1110). The example circuit is simple (from the data sheet):

singledemoDon’t forget the 10kΩ pull-up resistors on the I2C bus. The following sketch uses the ADS1110 in the default mode, and simply returns the voltage measured:

Once uploaded, connect the signal to measure and open the serial monitor – you’ll be presented with something similar to:

singledemosm

If you need to alter the gain of the internal programmable gain amplifier of the ADC – you’ll need to write a new byte into the configuration register using:

before requesting the ADC data. This would be 0x8D, 0x8E or 0x8F for gain values of 2, 4 and 8 respectively – and use 0x8C to reset the ADS1110 back to default.

Differential ADC mode

In this mode you can read the difference between two voltages that each fall between zero and 5 V. The example circuit is simple (from the data sheet):

diffcircuit

We must note here (and in the data sheet) that the ADS1110 can’t accept negative voltages on either of the inputs. You can use the previous sketch for the same results – and the resulting voltage will be the value of Vin- subtracted from Vin+. For example, if you had 2 V on Vin+ and 1 V on Vin- the resulting voltage would be 1 V (with the gain set to 1).

Conclusion

Once again I hope you found this of interest, and possibly useful. And if you enjoy my tutorials, or want to introduce someone else to the interesting world of Arduino – check out my new book “Arduino Workshop” from No Starch Press.

LEDborder

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in ADC, ads1110, arduino, converter, I2C, lesson, TI, tutorialComments (10)

Exploring the TI Stellaris platform with Energia Arduino-compatible IDE

Introduction

In the same manner as their MSP430 development board, Texas Instruments also have another LaunchPad board with their powerful Stellaris LM4F120H5QR microcontroller. It’s an incredibly powerful and well-featured MCU – which offers an 80 MHz, 32-bit ARM Cortex-M4 CPU with floating point, 256 Kbytes of 100,000 write-erase cycle FLASH and many peripherals such as 1MSPS ADCs, eight UARTs, four SPIs, four I2Cs, USB & up to 27 timers, some configurable up to 64-bits.

That’s a bucket of power, memory and I/O for not much money – you can get the LaunchPad board for around $15. This LaunchPad has the in-circuit debugger, two user buttons, an RGB LED and connectors for I/O and shield-like booster packs:

and the other side:

However the good news as far as we’re concerned is that you can now use it with the Energia Arduino-compatible IDE that we examined previously. Before rushing out to order your own Stellaris board, install Energia and examine the available functions and libraries to make sure you can run what you need. And if so, you’re set for some cheap Arduino power.

Installation

Installation is simple, just get your download from here. If you’re running Windows 7 – get the USB drivers from here. When you plug your LaunchPad into the USB for the first time, wait until after Windows attempts to install the drivers, then install drivers manually after download via Device manager … three times (JTAG, virtual serial port and DFU device). Use the debug USB socket (and set the switch to debug) when installing and uploading code. If you get the following warning from Windows, just click “Install this driver software anyway”:

Once the drivers are installed, plug in your LaunchPad, wait a moment – then run Energia. You can then select your board type and serial port just like the Arduino IDE. Then go ahead and upload the “blink” example…

stellarisblink

Awesome – check out all that free memory space. In the same manner as the MSP430, there are some hardware<>sketch differences you need to be aware of. For example, how to refer to the I/O pins in Energia? A map has been provided for front:

stellarpad-e28094-pins-maps1

… and back:

stellarpad-back-e28094-pins-maps1

As you can imagine, the Stellaris MCUs are different to an AVR, so a lot of hardware-specific code doesn’t port over from the world of Arduino. One of the first things to remember is that the Stellaris is a 3.3V device. Code may or may not be interchangeable, so a little research will be needed to match up the I/O pins and rewrite the sketch accordingly. For example, instead of digital pins numbers, you use PX_Y – see the map above. So let’s say you want to run through the RGB LED… consider the following sketch:

Which simply blinks the red, green and blue LED elements in series. Using digital inputs is in the same vein, and again the buttons are wired so when pressed they go LOW. An example of this in the following sketch:

And for the non-believers:

Where to from here? 

Sometimes you can be platform agnostic, and just pick something that does what you want with the minimum of time and budget. Or to put it another way, if you need a fast CPU and plenty of space but couldn’t be bothered don’t have time to work with Keil, Code Composer Studio, IAR etc – the Energia/Stellaris combination could solve your problem. There’s a growing Energia/Stellaris forum, and libraries can be found here. At the time of writing we found an I2C library as well.

However to take full advantage of the board, consider going back to the TI tools and move forward with them. You can go further with the tutorials and CCS etc from Texas Instruments own pages.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, arm cortex, energia, launchpad, lesson, LM4F120H5QR, MSP430, product review, software review, stellaris, TI, tiva-c, tutorialComments (2)

RF Wireless Data with the Seeedstudio RFbee

Introduction

In this article we examine the Seeedstudio RFbee Wireless Data Transceiver nodes. An RFbee is a small wireless data transceiver that can be used as a wireless data bridge in pairs, as well as a node in mesh networking or data broadcasting. Here is an example of an RFbee:

You may have noticed that the RFbee looks similar to the Xbee-style data transceivers – and it is, in physical size and some pinouts, for example:

comparison

However this is where the similarity ends. The RFbee is in fact a small Arduino-compatible development board based on the Atmel ATmega168 microprocessor (3.3V at 8MHz – more on this later) and uses a Texas Instruments CC1101 low-power sub1-GHz RF transceiver chip for wireless transfer. Turning over an RFbee reveals this and more:

But don’t let all this worry you, the RFbee is very simple to use once connected. As a transceiver the following specifications apply:

  • Data rate – 9600, 19200, 38400 or 115200bps
  • Adjustable transmission power in stages between -30dBm and 10 dBm
  • Operating frequency switchable between 868MHz and 915MHz
  • Data transmission can be point-to-point, or broadcast point-to-many
  • Maximum of 256 RFbees can operate in one mesh network
  • draws only 19.3mA whilst transmitting at full power

The pinout for the RFbee are similar to those of an Xbee for power and data, for example:

There is also the ICSP pins if you need to reprogram the ATmega168 direcly with an AVRISP-type programmer.

Getting Started

Getting started is simple – RFbees ship with firmware which allows them to simply send and receive data at 9600bps with full power. You are going to need two or more RFbees, as they can only communicate with their own kind. However any microcontroller with a UART can be used with RFbees – just connect 3.3V, GND, and the microcontroller’s UART TX and RX to the RFbee and you’re away. For our examples we will be using Arduino-compatible boards. If Arduino is new to you, consider our tutorials first.

If you ever need to update the firmware, or reset the RFbee to factory default after some wayward experimenting – download the firmware which is in the form of an Arduino sketch (RFBee_v1_1.pde) which can be downloaded from the repository. (This has been tested with Arduino v23). In the Arduino IDE, set the board type to “Arduino Pro or Pro Mini (3.3V, 8MHz) w/ATmega168”. From a hardware perspective, the easiest way to update the firmware is via a 3.3V FTDI cable or an UartSBee board, such as:

xbs4

You will also find a USB interface useful for controlling your RFbee via a PC or configuration (see below). In order to do this,  you will need some basic terminal software. A favourite and simple example is called … “Terminal“. (Please donate to the author for their efforts).

Initial Testing

After connecting your RFbee to a PC, run your terminal software and set it for 9600 bps – 8 – None – no handshaking, and click the check box next to “+CR”. For example:

term1

Select your COM: port (or click “ReScan” to find it) and then “Connect”. After a moment “OK” should appear in the received text area. Now, get yourself an Arduino or compatible board of some sort that has the LED on D13 (or substitute your own) and upload the following sketch:

Finally, connect the Arduino board to an RFbee in this manner:

  • Arduino D0 to RFbee TX
  • Arduino D1 to RFbee RX
  • Arduino 3.3V to RFbee Vcc
  • Arduino GND to RFbee GND
and the other RFbee to your PC and check it is connected using the terminal software described earlier. Now check the terminal is communicating with the PC-end RFbee, and then send the character ‘A’, ‘B’ or ‘C’. Note that the LED on the Arduino board will blink one, two or three times respectively – or five times if another character is received. It then reports back “Blinking completed!” to the host PC. For example (click to enlarge):
term2

Although that was a very simple demonstration, in doing so you can prove that your RFbees are working and can send and receive serial data. If you need more than basic data transmission, it would be wise to get a pair of RFbees to experiment with before committing to a project, to ensure you are confident they will solve your problem.

More Control

If you are looking to use your RFbees in a more detailed way than just sending data at 9600 bps at full power, you will need to  control and alter the parameters of your RFbees using the terminal software and simple AT-style commands. If you have not already done so, download and review the RFbee data sheet downloadable from the “Resources” section of this page. You can use the AT commands to easily change the data speed, power output (to reduce current draw), change the frequency, set transmission mode (one way or transceive) and more.

Reading and writing AT commands is simple, however at first you need to switch the RFbee into ‘command mode’ by sending +++ to it. (When sending +++ or AT commands, each must be followed with a carriage return (ASCII 13)). Then you can send commands or read parameter status. To send a command, just send AT then the command then the parameter. For example, to set the data rate (page ten of the data sheet) to 115200 bps, send ATBD3 and the RFbee will respond with OK.

You can again use the terminal software to easily send and receive the commands. To switch the RFbee from command mode back to normal data mode, use ATO0 (that’s AT then the letter O then zero) or power-cycle the RFbee.

RFbee as an Arduino-compatible board with inbuilt wireless

As mentioned previously the RFbee is based around an Atmel ATmega168 running at 8MHz with the Arduino bootloader. In other words, we have a tiny Arduino-compatible board in there to do our bidding. If you are unfamiliar with the Arduino system please see the tutorials listed here. However there are a couple of limitations to note – you will need an external USB-serial interface (as noted in Getting Started above), and not all the standard Arduino-type pins are available. Please review page four of the data sheet to see which RFbee pins match up to which Arduino pins.

If for some reason you just want to use your RFbee as an Arduino-compatible board, you can do so. However if you upload your own sketch you will lose the wireless capability. To restore your RFbee follow the instructions in Getting Started above.

The firmware that allows data transmission is also an Arduino sketch. So if you need to include RF operation in your sketch, first use a copy of the RFBee_v1_1.pde included in the repository – with all the included files. Then save this somewhere else under a different name, then work your code into the main sketch. To save you the effort you can download a fresh set of files which are used for our demonstration. But before moving forward, we need to learn about controlling data flow and device addresses…

Controlling data flow

As mentioned previously, each RFbee can have it’s own numerical address which falls between zero and 255. Giving each RFbee an address allows you to select which RFbee to exchange data with when there is more than two in the area. This is ideal for remote control and sensing applications, or to create a group of autonomous robots that can poll each other for status and so on.

To enable this method of communication in a simple form several things need to be done. First, you set the address of each RFbee with the AT command ATMAx (x=address). Then set each RFbee with ATOF2. This causes data transmitted to be formatted in a certain method – you send a byte which is the address of the transmitting RFbee, then another byte which is the address of the intended receipient RFbee, then follow with the data to send. Finally send command ATAC2 – which enables address checking between RFbees. Data is then sent using the command

Where data is … the data to send. You can send a single byte, or an array of bytes. length is the number of bytes you are sending. sourceAddress and destinationAddress are relevant to the RFbees being used – you set these addresses using the ATMAx described earlier in this section.

If you open the file rfbeewireless.pde in the download bundle, scroll to the end of the sketch which contains the following code:

This is a simple example of sending data out from the RFbee. The RFbee with this sketch (address 1) sends the array of bytes (testdata[]) to another RFbee with address 2.  You can disable address checking by a receiving RFbee with ATAC0 – then it will receive any data send by other RFbees.

To receive data use the following function:

The variable result will hold the incoming data, len is the number of bytes to expect, sourceAddress and destinationAddress are the source (transmitting RFbee) and destination addresses (receiving RFbee). rssi and lqi are the signal strength and link quality indicator – see the TI CC1101 datasheet for more information about these. By using more than two RFbees set with addresses you can selectively send and receive data between devices or control them remotely. Finally, please note that RFbees are still capable of sending and receiving data via the TX/RX pins as long as the sketch is not executing the sendTestData() loop.

I hope you found this introduction interesting and useful. The RFbees are an inexpensive and useful alternative to the popular Xbee modules and with the addition of the Arduino-compatible board certainly useful for portable devices, remote sensor applications or other data-gathering exercises.

For more information and product support, visit the Seeedstudio product pages.

RFbees are available from Seeedstudio and their network of distributors.

Disclaimer – RFbee products used in this article are promotional considerations made available by Seeedstudio.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, education, lesson, RF, rfbee, seeedstudio, tutorial, wireless, WLS126E1P, xbee

Tutorial: Arduino and the I2C bus – Part Two

Part two of our Arduino and I2C bus tutorial.

[Updated 28/11/2014]

Today we are going to continue learning about the I2C bus and how it can work for us. If you have not already, please read and understand the first I2C article before continuing.

First of all, there are some limitations of I2C to take into account when designing your projects. One of these is the physical length of the SDA and SCL lines. If all your devices are on the same PCB, then there is nothing to worry about, however if your I2C bus is longer than around one metre, it is recommended that you use an I2C bus extender IC. These ICs reduce electrical noise over the extended-length bus runs and buffer the I2C signals to reduce signal degradation and chance of errors in the data. An example of such an IC is the NXP P82B715 (data sheet). Using a pair of these ICs, you can have cable runs of 20 to 30 metres, using shielded twisted-pair cable. Below is a good example of this, from the aforementioned NXP data sheet:

i2cbufferedss

Several applications come to mind with an extended I2C bus, for example remote temperature monitoring using the the ST Microelectronics CN75 temperature sensor from part one; or controlling several I/O ports using an I2C expander without the expense or worry of using a wireless system. Speaking of which, let’s do that now…

A very useful and inexpensive part is the PCF8574 I/O expander (data sheet.pdf). This gives us another eight outputs, in a very similar method to the 74HC595; or can be used as eight extra inputs. In fact, if you were to use more than one 74HC595 this IC might be preferable, as you can individually address each chip instead of having to readdress every IC in line as you would with shift registers. So how do we do this? First, let’s consult the pinout:

There should not be any surprises for you there. A2~A0 are used to select the last three bits of the device address, P0~P7 are the I/O pins, and INT is an interrupt output which we will not use. To address the PCF8574 we need two things, the device address, and a byte of data which represents the required output pin state. Huh? Consider:

pcf8574intdef

So if we set pins A0 to A2 to GND, our device address in binary will be 0100000, or 0x20 in hexadecimal. And the same again to set the output pins, for example to turn them all on we send binary 0 in hexadecimal which is 0; or to have the first four on and the second four off, use 00001111 which is Ox0F. Hopefully you noticed that those last two values seemed backwards – why would we send a zero to turn all the pins on?

The reason is that the PCF8574 is a current sink. This means that current runs from +5v, through into the I/O pins. For example, an LED would have the anode on the +5V, and the cathode connected to an I/O pin. Normally (for example with a 74HC595) current would run from the IC, through the resistor, LED and then to earth. That is a current source. Consider the following quick diagram:

sinksource1

In the example above, please note that the PCF8574N can take care of current limitation with LEDs, whereas the 74HC595 needs a current-limiting resistor to protect the LED.

Luckily this IC can handle higher volumes of current, so a resistor will not be required. It sounds a bit odd, but like anything is easy once you spend a few moments looking into it. So now let’s use three PCF8574s to control 24 LEDs. To recreate this masterpiece of blinkiness you will need:

  • Arduino Uno or compatible board
  • A large solderless breadboard
  • Three PCF8574 I/O extenders
  • Eight each of red, green and yellow (or your choice) LEDs, each with a current draw of no more than 20mA
  • Two 4.7 kilo ohm resistors
  • Hook-up wires
  • Three 0.1 uF ceramic capacitors

Here is the schematic:

exam21p1schemss

… and the example board layout:

example21p1boardss

and the example sketch. Note that the device addresses in the sketch match the schematic above. If for some reason you are wiring your PCF8574s differently, you will need to recalculate your device addresses:

 And finally our demonstration video:


That was a good example of controlling many outputs with our humble I2C bus. You could literally control hundreds of outputs if necessary – a quite inexpensive way of doing so. Don’t forget to take into account the total current draw of any extended circuits if you are powering from your Arduino boards.

LEDborder

The next devices to examine on our I2C bus ride are EEPROMs – Electrically Erasable Programmable Read-Only Memory. These are memory chips that can store data without requiring power to retain memory. Why would we want to use these? Sometimes you might need to store a lot of reference data for use in calculations during a sketch, such as a mathematical table; or perhaps numerical representations of maps or location data; or create your own interpreter within a sketch that takes instruction from data stored in an array.

In other words, an EEPROM can be used to store data of a more permanent use, ideal for when your main microcontroller doesn’t haven enough memory for you to store the data in the program code. However, EEPROMs are not really designed for random-access or constant read/write operations – they have a finite lifespan. But their use is quite simple, so we can take advantage of them.

EEPROMS, like anything else come in many shapes and sizes. The model we will examine today is the Microchip 24LC256 (data sheet.pdf). It can hold 256 kilobits of data (that’s 32 kilobytes) and is quite inexpensive. This model also has selectable device addresses using three pins, so we can use up to eight at once on the same bus. An example:

24lc256bb

The pinouts are very simple:

Pin 7 is “write protect” – set this low for read/write or high for read only. You could also control this in software if necessary. Once again we need to create a slave I2C device address using pins 1, 2 and 3 – these correlate to A2, A1 and A0 in the following table:

So if you were just using one 24LC256, the easiest solution would be to set A0~A2 to GND – which makes your slave address 1010000 or 0x50 in hexadecimal. There are several things to understand when it comes to reading and writing our bytes of data. As this IC has 32 kilobytes of storage, we need to be able to reference each byte in order to read or write to it. There is a slight catch in that you need more than one byte to reference 32767 (as in binary 32767 is 11111111 0100100 [16 bits]).

So when it comes time to send read and write requests, we need to send two bytes down the bus – one representing the higher end of the address (the first 8 bits from left to right), and the next one representing the lower end of the address (the final 8 bits from left to right) – see figure 6.1 on page 9 of the data sheet.

An example – we need to reference byte number 25000. In binary, 25000 is 0110000110101000. So we split that up into 01100001 and 10101000, then covert the binary values to numerical bytes with which to send using the Wire.send(). Thankfully there are two operators to help us with this. This first is >>, known as bitshift right. This will take the higher end of the byte and drop off the lower end, leaving us with the first 8 bits. To isolate the lower end of the address, we use another operator &, known as bitwise and. This unassuming character, when used with 0XFF can separate the lower bits for us. This may seem odd, but will work in the examples below.

Writing data to the 24LC256

Writing data is quite easy. But first remember that a byte of data is 11111111 in binary, or 255 in decimal. First we wake up the I2C bus with:

then send down some data. The first data are the two bytes representing the address (25000) of the byte (12) we want to write to the memory.

And finally, we send the byte of data to store at address 25000, then finish the connection:

There we have it. Now for getting it back…

Reading data from the 24LC256

Reading is quite similar. First we need to start things up and move the pointer to the data we want to read:

Then, ask for the byte(s) of data starting at the current address:

In this example, incomingbyte is a byte variable used to store the data we retrieved from the IC. Now we have the theory, let’s put it into practice with the test circuit below, which contains two 24LC256 EEPROMs. To recreate this you will need:

  • Arduino Uno or compatible board
  • A large solderless breadboard
  • Two Microchip 24LC256 EEPROMs (you can use 24LC512s as well)
  • Two 4.7 kilo ohm resistors
  • Hook-up wires
  • Two 0.1 uF ceramic capacitors

Here is the schematic:

examp21p2schemss

… the board layout:

exam21p2boardss

and the example sketch. Note that the device addresses in the sketch match the schematic above. If for some reason you are wiring your 24LC256s differently, you will need to recalculate your device addresses. To save time with future coding, we have our own functions for reading and writing bytes to the EEPROM – readData() and writeData(). Consider the sketch for our example:

And the output from the example sketch:

example21p2result

Although the sketch in itself was simple, you now have the functions to read and write byte data to EEPROMS. Now it is up to your imagination to take use of the extra memory.

If you enjoyed this article, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a fourth printing!) “Arduino Workshop”.

visit tronixlabs.com

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website.

Posted in 24LC256, arduino, I2C, learning electronics, lesson, microcontrollers, PCF8574, tutorialComments (17)

Review – Texas Instruments TLC5940 16-channel LED driver IC

Hello readers

Today we are going to examine the Texas Instruments TLC5940 16-channel LED driver IC. My reason for doing this is to demonstrate another, easier way of driving many LEDs as well as LED display modules that are common-anode. If you have a common-cathode display module, you should have a look at the Maxim MAX7219. Moving along, here is the IC:

tlc5940sss

Another nice big DIP IC. Also available in HTSSOP and QFN packaging. What can this IC do for us? It can control 16 LEDs per IC, and also be cascaded to control more and more, with the display data arriving via a serial line in the same manner as a 74HC595 shift register. Furthermore, another benefit of this IC is that you don’t need matching current-limiting resistors for your LEDs, as this IC is a current sink, in that the current flows from the 5V rail, through the LED, then into the IC. However, it can control the brightness of the LEDs using pulse-width modulation over 4096 steps via software, or using a single resistor.

What is pulse-width modulation? Normally an LED might be on, or off. But if you switch it on and off very quickly, it does not look as bright (as it is not on 100% of the time). If you alter the period of time between on and off, you can alter the perceived brightness of the LED. Here is an example, compare the brightness of the LED bars against the display of the CRO – as the brightness increases, the voltage (amplitude [vertical thickness]) spreads across the entire time period (horizontal axis); as the brightness decreases, the voltage spread across time retreats:

Using the IC is very easy on the hardware front. Here is the data sheet: TLC5940.pdf. The pinout diagram is quite self-explanatory:

Pins OUT0~OUT15 are the current-sink pins for each LED. When one is selected they allow current to flow into the IC from the 5V rail, with the LED in between – turning it on. However it is easier to understand with a practical example, such as this:

tlc5940demo1schematic

If you are using an Arduino Mega-style board, the wiring is a little different, please see here for the instructions.

Here we have our Arduino board or compatible sending serial data to the TLC5940 to control sixteen LEDs. The 2k ohm resistor is required to set the maximum current available to flow through the LEDs, thereby adjusting their brightness. Using software you can adjust the brightness with PWM for each LED by itself. Very important: this circuit will need external power into the Arduino or a separate 5V power supply. The circuitry on the breadboard draws up to ~318 mA by itself – running the Arduino from USB only made it somewhat flaky in operation. Here is the circuit in action with an ammeter between the breadboard and 5V out on the Arduino:

Anyhow, let’s get moving once more – here is the assembled demonstration circuit:

tlc5940demo1bbs

For our example, we will be using the Arduino way of doing things. Thankfully (once more) there is a library to make controlling the IC exponentially easier. The library page and download files are available from here.  If you need guidance on installing a library, please visit here. However the commands to control the IC are quite simple with the Arduino library.

First of all, include the TLC5940 library, as such:

Then in void setup(); you create the object using the function:

You can insert a number between 0 and 4095 to set the starting PWM (LED brightness) value, however this is optional. Setting an output for display requires two functions, first Tlc.set(l, p); where l is the output (0~15) and p is the PWM brightness level – then execute Tlc.update(); which sends the command to the IC to be executed. The sketch below is easy to follow and understand the process involved.

Moving forward with the demonstration, here is the sketch  – TLC5940demo.pdf, and the video clip of operation:

When the LEDs are glowing from dim to bright and return, we are altering the PWM value of the LEDs to adjust their brightness. This also occurs during the last operation where the LEDs are operating like the bonnet of KITT.

Below is an example of TLC5940 use by JM – he has made an awesome RGB LED cube:

Well once again that’s enough blinkiness for now, again this is another useful IC that helps simplify things and be creative. As always, avoid the risk of counterfeit ICs  – so please avoid disappointment, support your local teams and buy from a reputable distributor. Living in Australia, mine came from element-14 (part number 1226306). So have fun! High resolution photos are available from flickr.

Remember, if you have any questions at all please leave a comment (below). We also have a Google Group dedicated to the projects and related items on the website – please sign up, it’s free and we can all learn something.

Posted in arduino, lesson, part review, tlc5940, tutorialComments (28)


Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: