Tag Archive | "USB"

Kit Review – SC/Jaycar USB Power Monitor

Introduction

Every month Australian electronics magazine Silicon Chip publishes a variety of projects, and in December 2012 they published the USB Power Monitor by Nicholas Vinen. Jaycar picked it up and now offers a kit, the subject of our review. This small device plugs inline between a USB port and another device, and can display the current drawn, power and voltage at the USB port with a large LCD module. This is useful when you’re experimenting with USB-powered devices such as Arduino projects or curious how external USB devices can affect your notebook computer’s battery drain.

Assembly

The kit arrives in typical Jaycar fashion:

… everything necessary is included with the kit:

The instructions arrive as an updated reprint of the original magazine article, plus the usual notes from Jaycar about warranty and their component ID sheet which is useful for beginners. The PCB is quite small, and designed to be around the same size as the LCD module:

As you can see below, most of the work is already done due to the almost exclusive use of SMD components:

That’s a good thing if you’re in a hurry (or not the best with surface-mount work). Therefore the small amount of work requires is simply to solder in the USB sockets, the button and the LCD:

It took less than ten minutes to solder together. However – take careful, careful note of the LCD. There isn’t a pin 1 indicator on the module – so instead hold the LCD up to the light and determine which side of the screen has the decimal points – and line it up matching the silk-screening on the PCB. Once finished you can add the clear heatshrink to protect the meter, but remember to cut a small window at the back if you want access to the ICSP pins for the PIC microcontroller:

How it works

The USB current is passed through a 50 mΩ shunt resistor, with the voltage drop being measured by an INA282 current shunt monitor IC. The signal from there is amplified by an op amp and then fed to the ADC of a PIC18F45K80 microcontroller, which does the calculations and drives the LCD. For complete details purchase the kit or a copy of the December 2012 edition of Silicon Chip.

Operation

First you need to calibrate the unit – when first used the meter defaults to calibration mode. You simply insert it into a USB port. then measure the USB DC voltage brought out to two pads on the meter. By pressing the button you can match the measured voltage against the display as shown below – then you’re done.

Then you simply plug it in between your USB device and the socket. Press the button to change the measurement. The meter can measure the following ranges:

For an operational example. consider the next three images are from charging my phone – with the power, current and voltage being shown:

“P” for power…

current in mA

“b” for bus voltage

If you want to use the USB ports on the right-hand side of your computer, just press the button while inserting the meter – and it flips around:

Finally – here’s a quick video of the meter at work, whilst copying a file to an external USB hard drive:

Conclusion

I really like this – it’s simple and it works. Kudos to Nicholas for his project. You can purchase it from Jaycar and their resellers, or read more about it in the December 2012 edition of Silicon Chip. Full-sized images available on flickr. This kit was purchased without notifying the supplier.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in jaycar, kc5516, kit review, monitor, power, silicon chip, USB

First Look – the Arduino Leonardo

Introduction

Recently the Arduino Leonardo was released, and I’ve finally got my hands on one. Some have claimed that the Leonardo as the successor to the Arduino Uno board, however that is somewhat subjective.  In this article we have a look for ourselves and examine the differences between the Uno boards that we’re used to and the new Leonardo.

The board

Here it is unwrapped from the cardboard packet:

It uses the same physical footprint as the Uno, so no surprises there:

 Now to travel around the board and see what’s new. First is the microcontroller – we have the Atmel ATmega32U4:

There are several pros and cons to using the 32U4. The pros include:

  • More analogue inputs. As well as the usual A0~A5, digital pins 4,6,8,9,10 and 12 can be configured as A6~A11
  • It handles USB. So no more external USB controller MCU or the old FTDI chip. Supposedly this saves money, however the retail price in some markets don’t reflect this
  • More PWM pins – well one more. They’re now on D3, 5, 6, 9, 10, 11 and 13
  • There is a little more SRAM than the Uno, it is now 2.5 kB
  • SPI has moved – they’re now wired to the ICSP pins. So you now have D10~D13 seperate to SPI
And the cons:
  • SPI has moved – they’re now wired to the ICSP pins. So if you have any shields that use SPI – too bad, they’re out. The most common example of this will be Ethernet shields – you’ll need to modify them with some jumper leads to contact the ICSP pins
  • I2C has moved over to D2+3. So if you have any shields using I2C – they’ll need to be modified
  • Less flash memory – the bootloader uses 4 kB of the 32 kB flash (the Uno used 0.5 kB)

However you can get an adaptor shield to use older Arduino shields with the Leonardo.

For MCU to Arduino pin mapping, see here. Next, for more on the USB side of things – as the 32U4 takes care of USB – take heed of the following notes from arduino.cc:

Since the Leonardo does not have a dedicated chip to handle serial communication, it means that the serial port is virtual— it’s a software routine, both on your operating system, and on the Leonardo itself. Just as your computer creates an instance of the serial port driver when you plug in any Arduino, the Leonardo creates a serial instance whenever it runs its bootloader. The Leonardo is an instance of USB’s Connected Device Class (CDC) driver.

This means that every time you reset the board, the Leonardo’s USB serial connection will be broken and re-established. The Leonardo will disappear from the list of serial ports, and the list will re-enumerate. Any program that has an open serial connection to the Leonardo will lose its connection. This is in contrast to the Arduino Uno, with which you can reset the main processor (the ATmega328P) without closing the USB connection (which is maintained by the secondaryATmega8U2 or ATmega16U2 processor).

There are some other changes to the board. Moving on, the next change is the USB socket. Do you recognise this socket?

Yes – micro USB. Thankfully (!) a growing number of mobile phones use this type for charging and USB connection, so you may already have a matching cable. Note that the Leonardo doesn’t include a cable, so if you’re an iPhone user – order yourself a cable with your Leonardo.

Next, the LEDs have been moved to the edge of the board. You can see them in the above image to the right of the USB socket. No more squinting through shields at strange angles to check the TX/RX lights. However this isn’t a new invention, our friends at Freetronics have been doing this for some time. Furthermore, the reset button has been moved to the corner for easier access.

There are also seperate connectors for the I2C bus – next to AREF, which should make modifying existing shields a little easier:

 Finally, due to the reduction in components and shift to SMD – there is what could almost be called a large waste of space on the board:

A few extra user LEDs wouldn’t have been a bad idea, or perhaps circuitry to support Li-Po rechargeable batteries. However the argument will be “that’s what a protoshield is for”. Just saying… As for the rest of the hardware, the specifications can be found here.

Finally, the Leonardo is available in two versions – with and without headers. This makes it easier to embed the Leonardo into fixed applications as you can directly solder to the various I/O pins. An alternative to this would instead be the Freetronics LeoStick, as it is much smaller yet fully compatible.

Software

First – you need to drag yourself into Arduino IDE v1.0.1. Note you can run more than one version of the IDE on the same machine if you don’t mind sharing the same preferences file. Next, the Leonardo doesn’t reset when you open the serial monitor window (from arduino.cc) –

That means you won’t see serial data that’s already been sent to the computer by the board, including, for example, most data sent in the setup() function. This change means that if you’re using any Serial print(), println() or write() statments in your setup, they won’t show up when you open the serial monitor. To work around this, you can check to see if the serial port is open like so:

Using the 32U4, you also have two serial ports. The first is the emulated one via the USB, and the second is the hardware UART on digital pins 0 and 1. Furthermore, the Leonardo can emulate a USB keyboard and mouse – however with a few caveats. There is a section on the Leonardo homepage that you should really read and take note of. But this emulation does sound interesting, and we look forward to developing some interesting tools to take use of them, so stay tuned.

Conclusion

There is nothing wrong with the Leonardo board, it works as described. However you could consider this a virtual “line in the sand”, or a new beginning. Due to the changes in the pinouts shields will need to be redesigned, and for those of you still programming in Arduino v23 – it’s time to get up to speed with v1.0.1. If you need the special USB functions, keyboard and/or mouse emulation, or are happy with the changes and can get one for less than the cost of a Uno – great.

Here’s a video from the main man Massimo Banzi:

However if you’re looking for your first Arduino board – this isn’t the board for you right now. There are too many incompatible shields out there, and the inability to cheaply replace the microcontroller will see some beginners burn out their first couple of boards rendering them useless. Get yourself an Arduino Uno or compatible board such as the Freetronics Eleven.

In conclusion, classifying the Leonardo board as good or bad is not a simple decision. It may or may not be an improvement – depending on your needs. Right now – for beginners, this is not the board for you. For those who understand the differences between a Uno and Leonardo, sure – no problem. Frankly, I would get a LeoStick instead.  At the end – it’s up to you to make an informed decision.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, atmega32u4, DEV-11286, leonardo, review, tronixstuff, tutorialComments (23)

Is this the world’s smallest Arduino-compatible board?

Introducing the Freetronics LeoStick – one very small Arduino Leonardo-compatible** board, in the format of a typical USB memory stick – the board for integration into smaller projects, on-the-go fun when travelling, or minimalism-enthusiasts:

Whether or not the LeoStick is the world’s smallest Arduino-compatible board – it’s pretty darn tiny – for example:

Note that the length includes the USB plug extrusion on the PCB. A lot of small boards on the market may consider themselves to be fully Arduino-compatible, but with a few minor or major caveats – such as not having full USB interface, or using a cut-down MCU such as an ATtiny, or offer less current handling ability. After comparing their specifications with the LeoStick, you can see how much has gone into such a small board:

  • Native USB port built-in, no need for any USB or FTDI cables
  • Two Full Color RGB LEDs on-board! Drive different colored outputs and fun feedback from your sketch right away. One RGB LED is completely programmable, the other does Power, USB RX and TX indication, the RX and TX LEDs can also be controlled.
  • On-board Piezo speaker element, play sounds, tunes and beeps. Can also be used as a knock/vibration sensor
  • Same I/O pins. The LeoStick provides all the same header connections as larger boards, you can connect all the same sensors, actuators, and other inputs and outputs as typical Arduino models.
  • Breadboard compatible, has 0.1″ pitch pads and header pins can be fitted underneath
  • 500mA polyfuse and protection on the USB port
  • ATmega32U4 microcontroller, Arduino compatible with on-board USB, 32K Flash, 2.5K RAM, 1K EEPROM at 16MHz
  • ISP 6-pin connector for advanced programming of the ATmega32U4 MCU

Here is the underside of the LeoStick , showing the piezo speaker:

And here is a quick video of the LeoStick in action:

** Although this is a newly-released product, it does rely on a modified beta version of the upcoming Arduino Leonardo bootloader. There are some known issues with Windows 7 64-bit drivers and some library functions don’t work perfectly yet. Any firmware or Arduino Leonardo compatible support should not be considered to be final release firmware or in any way an official Arduino. At Freetronics’ request, please don’t hassle the Arduino team with support or requests related to this board – they’re solely the responsibility of Freetronics.

Nevertheless there is a growing and vibrant support forum where you can see examples of the LeoStick in action and discuss other subjects and issues. The LeoStick is also a very complete ATmega32U4 breakout and USB board by itself and the LeoStick can be programmed directly from the supplied standard ISP header by AVR Studio, Mac OSX-AVR, avrdude, WinAVR etc.

The LeoStick  is also new to us here as well, and we look forward to integrating it into projects in the near future, as well as having a board to experiment with when travelling. As we always say – if it meets your needs or you want to try something new, you could do a lot worse than getting yourself a LeoStickIf you are interested in learning how to use Arduino in general – check out our tutorial here. For more discussion and support information for the LeoStick consult the forum or product web page.

Disclaimer – The LeoStick board reviewed in this article was a promotional consideration made available by Freetronics

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, freetronics, leonardo, leostick, review

Review: The Gravitech Arduino Nano family

Hello Readers

In this article we will examine a variety of products received for review from Gravitech in the United States – the company that designed and build the Arduino Nano. We have a Nano and some very interesting additional modules to have a look at.

So let’s start out review with the Arduino Nano. What is a Nano? A very, very small version of our Arduino Duemilanove boards. It contains the same microcontroller (ATmega328) but in SMD form; has all the I/O pins (plus two extra analogue inputs); and still has a USB interface via the FT232 chip. But more on that later. Nanos arrive in reusable ESD packaging which is useful for storage when not in use:

Patriotic Americans should note that the Nano line is made in the USA. Furthermore, here is a video clip of Nanos being made:

For those who were unsure about the size of the Nano, consider the following images:

You can easily see all the pin labels and compare them to your Duemilanove or Uno board. There is also a tiny reset button, the usual LEDs, and the in circuit software programmer pins. So you don’t miss out on anything by going to a Nano. When you flip the board over, the rest of the circuitry is revealed, including the FTDI USB>serial converter IC:

Those of you familiar with Arduino systems should immediately recognise the benefit of the Nano – especially for short-run prototype production. The reduction in size really is quite large. In the following image, I have traced the outline of an Arduino Uno and placed the Nano inside for comparison:

So tiny… the board measures 43.1mm (1.7″) by 17.8mm (0.7″). The pins on this example were pre-soldered – and are spaced at standard 2.54mm (0.1″) intervals – perfect for breadboarding or designing into your own PCB –  however you can purchase a Nano without the pins to suit your own mounting purposes. The Nano meets all the specifications of the standard Arduino Duemilanove-style boards, except naturally the physical dimensions.

Power can be supplied to the Nano via the USB cable; feeding 5V directly into the 5V pin, or 7~12 (20 max, not recommended) into the Vin pin. You can only draw 3.3V at up to 50 mA when the Nano is running on USB power, as the 3.3V is sourced from the FTDI USB>serial IC. And the digital I/O pins still allow a current draw up to 40 mA each. From a software perspective you will not have any problems, as the Nano falls under the same board classification as the (for example) Arduino Duemilanove:

Therefore one could take advantage of all the Arduino fun and games – except for the full-size shields. But as you will read soon, Gravitech have got us covered on that front. If the Arduino system is new to you, why not consider following my series of tutorials? They can be found here. In the meanwhile, to put the size into perspective – here is a short video of a Nano blinking some LEDs!

Now back to business. As the Nano does not use standard Arduino shields, the team at Gravitech have got us covered with a range of equivalent shields to enable all sorts of activities. The first of this is their Ethernet and microSD card add-on module:

and the underside:

Again this is designed for breadboarding, or you could most likely remove the pins if necessary. The microSD socket is connected as expected via the SPI bus, and is fully compatible with the default Arduino SD library. As shown in the following image the Nano can slot directly into the ethernet add-in module:

The Ethernet board requires an external power supply, from 7 to 12 volts DC. The controller chip is the usual Wiznet 5100 model, and therefore the Ethernet board is fully compatible with the default Ethernet Arduino library. We tested it with the example web server sketch provided with the Arduino IDE and it all just worked.

The next add-on module to examine is the 2MOTOR board:

… and the bottom:

Using this module allows control of two DC motors with up to two amps of current each via pulse-width modulation. Furthermore, there is a current feedback circuit for each motor so you measure the motor load and adjust power output – interesting. So a motorised device could sense when it was working too hard and ease back a little (like me on a Saturday). All this is made possible by the use of the common L298 dual full-bridge motor driver IC. This is quite a common motor driver IC and is easy to implement in your sketches. The use of this module and the Nano will help reduce the size of any robotics or motorised project. Stay tuned for use of this board in future articles.

Next in this veritable cornucopia of  add-on modules is the USBHOST board:

turning it over …

Using the Maxim MAX3421E host controller IC you can interface with all sorts of devices via USB, as well as work with the new Android ADK. The module will require an external power supply of between 7 and 12 volts DC, with enough current to deal with the board, a Nano and the USB device under control – one amp should be more than sufficient. I will be honest and note that USB and Arduino is completely new to me, however it is somewhat fascinating and I intend to write more about using this module in the near future. In the meanwhile, many examples can be found here.

For a change of scene there is also a group of Xbee wireless communication modules, starting with the Xbee add-on module:

The Xbee itself is not included, only shown for a size comparison. Turning the module over:

It is nice to see a clearly-labelled silk screen on the PCB. If you are unfamiliar with using the Xbee wireless modules for data communication, you may find my introductory tutorial of interest. Furthermore, all of the Gravitech Nano modules are fully software compatible with my tutorial examples, so getting started will be a breeze. Naturally Gravitech also produce an Xbee USB interface board, to enable PC communication over your wireless modules:

Again, note that the Xbee itself is not included, however they can be supplied by Gravitech. Turning the board over reveals another highly-detailed silk screen:

All of the Gravitech Xbee modules support both series 1.0 and 2.5 Xbees, in both standard and professional variants. The USB module also supports the X-CTU configuration software from Digi.

Finally – leaving possibly the most interesting part until last, we have the MP3 Player add-on board:

and on the B-side:

The MP3 board is designed around the VS1053B MP3 decoder IC. It can also decode Ogg Vorbis, AAC, WMA and MID files. There is a 3.5mm stereo output socket to connect headphones and so on. As expected, the microSD card runs from the SPI pins, however SS is pin 4. Although it may be tempting to use this to make a home-brew MP3 player, other uses could include: recorded voice messages for PA systems such as fire alarm notices, adding sound effects to various projects or amusement machines, or whatever else you can come up with.

Update – We have examined the MP3 board in more detail with a beginner’s tutorial.

The Arduino Nano and related boards really are tiny, fully compatible with their larger brethren, and will prove very useful. Although this article was an introductory review, stay tuned for further projects and articles that will make use of the Nano and other boards. If you have any questions or enquiries please direct them to Gravitech via their contact page. Gravitech products including the Arduino Nano family are available directly from their website or these distributors.

As always, thank you for reading and I look forward to your comments and so on. Furthermore, don’t be shy in pointing out errors or places that could use improvement. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts, follow on twitterfacebook, or join our Google Group.

[Disclaimer – the products reviewed in this article are promotional considerations made available by Gravitech]

High resolution photos are available on flickr.

Otherwise, have fun, be good to each other – and make something! 

Posted in arduino, ethernet, gravitech, microcontrollers, mp3, nano, part review, xbeeComments (0)

April 2011 Competition – Results

Competition over!

Posted in competition, games, microcontrollersComments (0)

April 2011 Competition

Competition over!

Posted in competition, games, microcontrollersComments (0)

Kit Review – MDC Bare-bones Board Kit (Arduino-compatible)

Hello readers

Today we continue to examine Arduino-compatible products by assembling an interesting kit from Modern Device Company – their “Bare Bones Board” (to be referred to as BBB). The BBB kit is an inexpensive way to take advantage of the Arduino Duemilanove-compatible platform, and also fills some gaps in the marketplace. Unlike the usual Arduino and compatible boards, the BBB does not maintain the recognisable form factor – that is, you cannot use the variety of Arduino shields. However, the BBB does have all the input and output connections, just in different positions.

So why would you use this kit? If you are looking to create a more permanent Arduino-based project that did not require a shield, and you are in a hurry – the BBB could be easily integrated into your design. Money is saved by not having the usual USB connection, so uploading your sketch is achieved using a 5V FTDI cable or using another Arduino board as the programmer.

Furthermore, the PCB is designed in a way that allows you to plug the BBB into the side of a solderless breadboard, which allows prototyping more complex Arduino-based circuits very easy. But more about that later. For now, let’s have a look at construction. An excellent set of instructions and a guide to use is available for download here.

In the spirit of saving money, the kit arrives in a plastic bag of sorts:

packagingss1

And upon emptying the contents, the following parts are introduced:

partsss2

Regular readers would know that the inclusion of an IC socket makes me very happy. The PCB is thicker than average and has a great silk-screen which makes following instructions almost unnecessary. One of the benefits of this kit is the ability to connect as little or as many I/O or programming pins as required.

And for the pins A0~A5, 5V, GND and AREF you are provided with header pins and a socket, allowing you to choose. Or you could just solder directly into the board. These pins are available on the bottom-left of the PCB. However there was one tiny surprise included with the parts:

rawinductor

This is a 15uH SMD inductor, used to reduce noise on the analog/digital section. According to the instructions, this was originally required with Arduino-style boards that used the ATmega168 microcontroller – however the BBB now includes the current ATmega328 which does not require the inductor. However, it is good to get some SMD practice, so I soldered it in first:

solder1ss1

Well it works, so that was a success. Soldering the rest of the main components was quite simple, thanks to the markings on the PCB. The key is to start with the lowest-profile (height) components (such as that pesky inductor) and work your way up to the largest. For example:

solder2ss1

As you can see from the PCB close-up above, you can have control over many attributes of your board. Please note that the revision-E kit does include the ATmega328 microcontroller, not the older ‘168. For more permanent installations, you can solder directly into I/O pins, the power supply and so on.

Speaking of power, the included power regulator IC for use with the DC input has quite a low current rating – 250 mA (below left). For my use, this board will see duty in a breadboard, and also a 5V supply for the rest of the circuit, so more current will be required. Thankfully the PCB has the space and pin spacing for a 7805 5V 1A regulator (below right), so I installed my own 7805 instead:

regulators

Finally, to make my Arduino-breadboarding life easier I installed the sockets for the analogue I/O, the DC socket and a row of header pins for the digital I/O. Below is my finished example connected into a breadboard blinking some LEDs:

finishedonbbss

In this example, the board is being powered from the 5V that comes along the FTDI cable. If doing so yourself, don’t forget that there is a maximum of 500 mA available from a USB port. If you need more current (and have installed the 7805 voltage regulator) make use of the DC socket, and set the PCB power select jumper to EXT. For a better look at the kit in action, here is a short video clip:

As you can see from the various angles shown in the video, there are many points on the PCB to which you can use for power, ground, I/O connection and so on. As illustrated at the beginning of this article, a variety of header pins are included with the kit. And please note that the LED on the board is not wired into D13 as other Arduino-type boards have been… the BBB’s LED is just an “on” indicator.

However if you are using this type of kit, you most likely will not need to blink a solitary LED. However some people do use the D13 LED for trouble-shooting, so perhaps you will need it after all. Each to their own!

In conclusion, the BBB is another successful method of prototyping with the Arduino system. The kit was of a good quality, included everything required to get working the first time, and is quite inexpensive if you have a 5V FTDI cable or an Arduino Duemilanove/Uno or compatible board for sketch uploading.

Once again, thank you for reading this kit review, and I look forward to your comments and so on. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts, and if you have any questions – why not join our Google Group? It’s free and we’re all there to learn and help each other.

High resolution photos are available on flickr.

[Note – this kit was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

Posted in arduino, bare bones board, kit review, learning electronics, microcontrollers, modern devicesComments (4)

Kit Review – adafruit industries mintyboost v3

Hello readers

Today we are going introduce another useful kit from adafruit industries – their mintyboost kit. The purpose of this kit is to provide a powered USB socket suitable for charging a variety of devices, powered from a pair of AA cells. The mintyboost is quite a simple, yet clever design – the latest version is based around the Linear Technology LT1302 DC/DC step-up converter that we examined a few months ago – and can provide a full 5 volts DC at 500 milliamps, enough to charge the latest round of USB-chargable gadgets, including those iPhones that I keep hearing about. And unlike an iPhone, the mintyboost kit is licensed under a Creative Commons v2.5 attribution license.

But enough reading, time to make it. As always, instructions are provided online – are easy to follow and very clear. The kit will arrive in a nice reusable anti-static bag:

bagss1

Which contains everything you need except for AA cells and a housing:

partsss5

Where or how you contain your mintyboost is a subjective decision, and will probably vary wildly. The original design brief was to have it fit inside a tin that Altoids confectionary is sold in, however those are not available around my area. But I found a suitable replacement. The PCB is very small, and designed to fit snugly inside the aforementioned tin:

pcbss2

Very small – less than 38 x 20 mm in dimension. However with some care and caution, you can solder the components without using a vice or “helping hands”. Though if you have access to these, use them as it will make life a lot easier. Before we move on, please note that my 49.9k ohm resistors, ceramic capacitors and the inductor are a different size to those included with the kit. This is my second mintyboost, and to save money I bought the PCB only and used my own parts to make this one.

If size is an issue for you, it is a good idea to buy the entire kit, as you will have resistors that fit flush with the PCB, unlike mine 🙂

resiscapsss1

However, construction moved along smoothly, by following the instructions, double-checking my work and not rushing things. There is some clever designing going on here, I have never seen a resistor underneath an IC socket before!

sockss

But when PCB real estate is at a premium, you need think outside of the box. After this stage there was just the electrolytic capacitors and battery holder to install. One that has been done, you can insert some fresh AA cells and check the output voltage on the USB lines:

5vss

Looking good, however it could have been a bit higher if the AA cells were freshly charged. But the second USB voltage was spot on:

1p9vss

Success! It always feels good to make a kit and have it work the first time. The last soldering was to take care of fitting the USB socket, and then it was finished:

barefinishedss

Now to take it for a test run. I have two USB-charging items to test it with, my HTC Desire:

htcss

The LED to the right of the htc logo indicates the power is in, and the battery indicator on the left of the clock indicates charging. Excellent. The phone battery is 1400 mAh – I most likely won’t get a full recharge from the two AA cells, but enough to get me through an extra night and half a day. The mintyboost is a perfect backup-charging solution to leave in your backpack or other daily case. And now for something from Apple, an iPod of about four years old (it still holds a charge, so I’m not falling for the “buy a new iPod every twelve months” mantra):

ipodss

Again, perfect. Apple equipment can be quite finicky about the voltages being fed to them, and will not work if there is a slight difference to what the device expects to be fed. As you can see the team at adafruit have solved this problem nicely. There is also much discussion about various devices and so on in their support forums.

Now for the decision with regards to housing my mintyboost. The Altoids tins are not an option, and I’m not cannibalising my mathematical instruments storage tin. But I knew I kept this tin for a reason from last February:

contentsss

Plenty of room for the PCB, the charging cable, emergency snack cash and even more AA cells if necessary. And where else could I have put the socket, but here:

rearendss

🙂 I have named it the bunnyboost:

bunnyboostss

… who can safely live in the bottom of my backpack, ready to keep things powered at a moments’ notice. Excellent!

As you can see, the mintyboost is a simple, yet very practical kit. It would also make a great gift for someone as well, as USB-charging devices are becoming much more popular these days. If you are looking to buy a kit, those of you in the Australasian market can get one from Little Bird Electronics, or globally available from adafruit industries. High resolution photos are available on flickr.

Once again, thank you for reading and I look forward to your comments and so on. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts, and if you have any questions – why not join our Google Group? It’s free and we’re all there to learn and help each other.

[Note – this kit was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

Posted in adafruit, kit review, LT1302, mintyboostComments (6)

Kit Review – adafruit industries XBee adaptor kit

Hello readers

Today we are going to examine a small yet useful kit from adafruit industries – their XBee adaptor kit. The purpose of doing so was to save some money. How? I needed another XBee USB explorer board to connect a PC to an XBee (as we have done in Moving Forward with Arduino – Chapter Fourteen), but they are around Au$33. However I already have an FTDI USB cable, so all I really need is this kit, as it will work with the FTDI cable. So this saves me around $20.

As usual the adafruit kit packaging is simple, safe and reusable:

bagss1

The components included are good as usual, including a great solder-masked, silk-screened PCB and an excess of header pins. Got to love a bonus, no matter how small:

componentsss

This did not take very long to assemble at all. After checking the parts against the parts list, it was time to fire up the iron and solder away. As usual the kit is almost over-documented on the adafruit web pages. But that is a good thing…

gettingtheress

Be careful when you place R3, make sure it doesn’t lean in towards the end of the IC too much, otherwise they could touch, or even worse – stop the IC from being seated properly:

closeicresistorss

Regular readers will know I get annoyed when IC sockets are not included with kits – but for the first time it is fine with me. If you use a socket, the IC will be elevated too much and stop the XBee from being inserted onto the board. But apart from R3 almost stopping the show, everything went smoothly. At the time you need to solder in the 2mm header socket strips for the XBee, the easiest way (if possible) is to seat an XBee in the sockets, then into the PCB:

2mmheadersss

Once you have followed the excellent instructions, the last thing to solder is the pins for the FTDI cable. You can either lay them out flat on the PCB, or insert them through the holes. This is my preferred way, and seating the lot in a breadboard to hold it steady is a good idea:

endheadersss

And finally, we’re finished:

finishedss

A quick check with Windows to ensure everything is OK:

And we are ready for communications. This was a very simple and inexpensive board to assemble – and excellent value if you need USB connection to your PC and you already have an FTDI cable.

Well I hope you found this review interesting, and helped you think of something new to make with XBees. You can purchase the kit directly from adafruit industries.

As always, thank you for reading and I look forward to your comments and so on. Furthermore, don’t be shy in pointing out errors or places that could use improvement. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts. Or join our new Google Group. High resolution images are available on flickr.

[Note – The kit was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

Posted in adafruit, kit review, part review, WRL-08687, xbeeComments (2)

Review – Ikalogic SCANALOGIC2 Logic Analyser/Signal Generator

Hello Readers

Today we will take a first look at the Ikalogic “Scanalogic2” PC-based logic analyser and signal generator. This is a tiny and useful piece of test equipment that should be useful for beginners and experienced engineers alike. It has been developed by two guys in Europe that are dedicated to the craft, and I wish them well. First of all, let’s pull it out of the box and see what we have:

contentssss

Upon opening the box, one finds a USB cable, the connector leads and the unit itself. It really is small, around 60 x 35 x 20mm. The USB cable is just under 900mm long. Finally a small instruction and welcome postcard which details a quick overview of the software and the unit’s specifications. Ikalogic are to be congratulated for the minimal level of packaging – finally a company that realises one can download the required items instead of printing books, burning DVDs and causing an increase in shipping weight.

The first thing you will need to do is download the latest software. It needs a Windows-based PC with .net framework. Installing took about two minutes, then the ubiquitous system restart. Finally the last preparation is to check for the latest firmware and update it. This is a simple procedure – download a .zip file, extract the .hexe file, then just file>update device firmware in the software. The desktop software checks for new versions before every startup, so you can be sure of having the latest version.

Here are the specifications of the unit from their web page:

specs

Certainly there is a lot there to take advantage of. Personally I consider the logic analyser functions to be of great interest, and will now demonstrate those to see how they can be useful in debugging and generally figuring out what my designs are up to.

One can capture data in two ways, either by using a live sampling mode, or capture mode where you set the device to sample data into its memory, and then reviewing the data using the software. If you are using the live mode, the quality of the sampling will be affected by your PC resources. For example, consider this first demonstration. A very simple Arduino is setting a pin high and low:

demo1ss

In live mode you can still use the horizontal scroll feature to move backwards and forwards through the captured data. One can also expand the data display to the full width of the window. When using the live mode, I found that there was still some variation in the logic levels that was not programmed for. My PC is fairly up to date, consisting of an AMD PhenonII dual-core 3.1 GHz CPU, 2GB RAM at 1066 MHz, running Windows 7 x64. Perhaps I could use some more RAM? A better video chipset? Who knows… Unfortunately I don’t have a more powerful PC to test. Therefore I will stick to the normal capture mode. Doing so is also quite easy – here is the basic setup tab:

It is pretty self-explanatory. If you have a fair idea of your sampling rate, you can drop it down to increase the available sampling time. Here I have selected the lowest sampling rate, as I will just capture the pulses as shown in the earlier demonstration. Once your sample has been collected, you can scroll through it at your leisure, and also save the sample to disk.

In being able to save the data for later retrieval, there are three things that can be done with the data:

  1. As anyone can download the software, you can share your samples by emailing or sharing the files with colleagues – they can playback the sample without owning a Scanalogic themselves, by just using the software;
  2. You can keep the sample for later analysis
  3. You can blast out the captured data using the function generator feature. Neat! Let’s do that now…

Earlier on I captured the following from an Arduino board:

demo3ss

And now I can just right-click on the data (channel one) and select run data generator for this channel then click start on the left. Which results in the following output:

Very good (except for my old CRO). Also notice the log area at the bottom of the application screen – it relays unit status, error messages and so on. Now let’s capture and look at some more interesting sample data. The following example is an example of captured data from an Arduino serial-out pin, which was programmed to send the letter “A” out at 2400 bps using serial.write();

uartdemoss

Once you have captured the sample, you can select the parameters of the data stream and decode the sample. As you can see in the image above, the decoder shows the data stream in hexadecimal and the ASCII equivalent.

Next on the test is I2C. This is a common two wire data bus from Philips/NXP, used in many systems. More about I2C with Arduino is here. A very popular example of an I2C IC is the Maxim DS1307 real-time clock. We can use our Scanalogic to eavesdrop on the SCA and SCL data lines to see what is being said between the microcontroller and the DS1307:

i2cone

So in the example above, the value 0x68 (binary 1101000) is sent down the bus. This is the unique identifier (slave address) for a DS1307 IC. So the Arduino is saying “Hey – DS1307 – wake up”. This is then followed by a 0x00 or directional bit. The DS1307 then replies by sending the time data back to the bus. The first piece of data in the reply is 0x68, which identifies to the I2C bus (recall that 0x68 is the DS1307 identifier) that the data is from the DS1307. Following this is the time and data data in hexadecimal, which is converted to binary-coded decimal in the microcontroller software.

When working with I2C, it really pays to have the data sheet for your IC with you. Then you can decipher the data, direction and timing with the sample data on one side and the timing diagrams on the other. For example, page twelve of the DS1307 data sheet. In doing so, it reminds me how much I dislike I2C 🙂

Moving along. Next we will have a look at some data from the SPI (serial peripheral interface) lines. Again, this is quite simple, you just connect the four hooks into the clock, MOSI, MISO and CS lines, and capture away. The software allows you to select which hook is connected to which line, so you can connect up quickly. At this point I will note that the IC hooks are somewhat inexpensive, and the designers could have spent a few more Euro on including some decent ones. Anyhow, here is the screen dump:

spidemo

At this point one can realise all sorts of monitoring possibilities. I wish I had one of these years ago when learning digital electronics – you could just monitor the highs and lows over four channels and debug things very quickly. Will keep this in mind when I get around to making a TTL clock.

Anyhow – the Scanalogic2 has a lot going for it in terms of data capturing ability, the price is right, you can update the software and firmware very easily, and the desktop software is freely available in order to share samples with others. There are a few cons though – the IC hooks could be better (I couldn’t connect four in a row onto an IC for the life of me); the unit could use some documentation in terms of a “Getting Started” guide or webpage – so due to this the learning curve is quite high. There is their version here, but I feel it could be expanded upon. Many beginners and amateurs will be attracted to this unit due to the price. However there is a support forum and so on, but answers can vary in quality and time. However, don’t let the cons put you off – this thing is cheap, the software is very good – and it works. Two thumbs up!

To purchase a Scanalogic2, visit the Ikalogic home page. If you need to analyse some data, and don’t want to spend a bucket of money – this is for you.

Posted in ikalogic, product review, review, Scanalogic, test equipmentComments (4)


Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: