Tag Archive | "width"

Review: Gravitech 7-Segment Arduino Shield

Hello Readers

In this article we examine the “7-Segment Arduino Shield” received for review from the team at Gravitech in the United States. This is an Arduino Uno/Duemilanove-type compatible shield that contains four very useful items:

  • Four 7-segment LED numerical displays – driven by the NXP SAA1064 LED display driver IC;
  • A large 10mm RGB LED;
  • A Microchip 24LC128 EEPROM, and
  • A TI TMP75 digital temperature sensor.
Apart from the LED all the other components are controlled via the I2C bus. So as well as being generally useful for experimenting, monitoring temperature and so on, this is an ideal board for Arduino and I2C bus practice. (If you have not done so already, consider reading our I2C tutorial, part one and two). Let’s look at the hardware, then move on to using the features.
As with other Gravitech products, the shield arrives in a reusable static shielding bag:
and here we have it:
The IC at the top-left of the shield is the TMP75 temperature sensor, bottom-left is the 24LC128 EEPROM, and the whopper below the first two digits is the NXP SAA1064. The shield layout is very neat and clean, and the white finish is a pleasant change compared to the usual black or green Arduino shields out there. The PWR LED is a blue colour. The only issues I found were that you cannot use this with a Mega due to the location of the I2C pins, and the component leads were not trimmed at the factory, which caused an issue when the shield was inserted into an Ethernet shield. This is easily solved by clipping the leads yourself:
Here is the shield in operation using the supplied demonstration sketch. The temperature is displayed in Celsius, with the LED changing colour depending on the temperature:

That is all very good, but how do we use the features of the board? Let’s look at each of the aforementioned features individually. First of all, the numeric display. The four seven-segment LED displays are controlled by the NXP SAA1064 LED display driver (data sheet (.pdf)). I have written a separate tutorial on how to use this IC, and it is completely compatible with this shield. So visit the tutorial here and put the numbers to work! Please note the I2C bus address for the SAA1064  is 0x38.

Next we have the RGB LED. Red, green and blue are connected to digital pins 3, 5 and 6 respectively. These are also pulse-width modulation pins, so you can have altering the brightness. Here is a simple demonstration sketch:

And for the curious, here it is in action:

Next, the Microchip 24LC128 EEPROM. It has 128kbit storage space, which translates to 16 kilobytes. The I2C bus address is 0x50. Once again there is a complete explanation of how to use this sort of EEPROM in another tutorial – check it out. But for quick reference the following demonstration sketch writes the numbers 0~255 to memory locations 0~255:

Although there is 16 kilobytes of memory the sketch only writes and reads to the first 255 locations. Each location can store a byte of value between zero and 255. Here is a screen shot of the serial monitor results (click to enlarge):

And now time to work with the Texas Instruments TMP75 temperature sensor (data sheet.pdf). It has a reasonable operating temperature range of between -40 and 125 degrees Celsius – however this would exceed the range in which your Arduino is capable of working, so no leaving the shield on the car dashboard during a hot summer’s day. The I2C bus address for the TMP75 is 0x49. We will deconstruct the Gravitech demonstration sketch to explain how the temperature works.

The TMP75 needs to be initialised before measurement can take place, by sending the following data:

The temperature data is received in two bytes of data, as it spans 12 bits. Thankfully the demonstration sketch has done the work for us. Have a look at the Cal_temp() function, which converts the two raw bytes of data from the TMP75. There is some bitwise arithmetic in there, however if you are not keen on going down to that level, it is easy enough to cut and paste the temperature and numeric display functions.  Here is a quick video of the demonstration sketch in action:

]

So there you have it – another useful and educational shield for use with your Arduino. If you have any questions or enquiries please direct them to Gravitech via their contact page. Gravitech products including the 7-segment shield are available directly from their website or these distributors.

As always, thank you for reading and I look forward to your comments and so on. Furthermore, don’t be shy in pointing out errors or places that could use improvement. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts, follow on twitterfacebook, or join our Google Group.

[Disclaimer – the shield reviewed in this article was a  promotional consideration made available by Gravitech]

High resolution photos are available on flickr.

Posted in 24LC128, arduino, gravitech, I2C, LED, microcontrollers, product review, review, SAA1064, TMP75, tutorialComments (0)

Review – Texas Instruments TLC5940 16-channel LED driver IC

Hello readers

Today we are going to examine the Texas Instruments TLC5940 16-channel LED driver IC. My reason for doing this is to demonstrate another, easier way of driving many LEDs as well as LED display modules that are common-anode. If you have a common-cathode display module, you should have a look at the Maxim MAX7219. Moving along, here is the IC:

tlc5940sss

Another nice big DIP IC. Also available in HTSSOP and QFN packaging. What can this IC do for us? It can control 16 LEDs per IC, and also be cascaded to control more and more, with the display data arriving via a serial line in the same manner as a 74HC595 shift register. Furthermore, another benefit of this IC is that you don’t need matching current-limiting resistors for your LEDs, as this IC is a current sink, in that the current flows from the 5V rail, through the LED, then into the IC. However, it can control the brightness of the LEDs using pulse-width modulation over 4096 steps via software, or using a single resistor.

What is pulse-width modulation? Normally an LED might be on, or off. But if you switch it on and off very quickly, it does not look as bright (as it is not on 100% of the time). If you alter the period of time between on and off, you can alter the perceived brightness of the LED. Here is an example, compare the brightness of the LED bars against the display of the CRO – as the brightness increases, the voltage (amplitude [vertical thickness]) spreads across the entire time period (horizontal axis); as the brightness decreases, the voltage spread across time retreats:

Using the IC is very easy on the hardware front. Here is the data sheet: TLC5940.pdf. The pinout diagram is quite self-explanatory:

Pins OUT0~OUT15 are the current-sink pins for each LED. When one is selected they allow current to flow into the IC from the 5V rail, with the LED in between – turning it on. However it is easier to understand with a practical example, such as this:

tlc5940demo1schematic

If you are using an Arduino Mega-style board, the wiring is a little different, please see here for the instructions.

Here we have our Arduino board or compatible sending serial data to the TLC5940 to control sixteen LEDs. The 2k ohm resistor is required to set the maximum current available to flow through the LEDs, thereby adjusting their brightness. Using software you can adjust the brightness with PWM for each LED by itself. Very important: this circuit will need external power into the Arduino or a separate 5V power supply. The circuitry on the breadboard draws up to ~318 mA by itself – running the Arduino from USB only made it somewhat flaky in operation. Here is the circuit in action with an ammeter between the breadboard and 5V out on the Arduino:

Anyhow, let’s get moving once more – here is the assembled demonstration circuit:

tlc5940demo1bbs

For our example, we will be using the Arduino way of doing things. Thankfully (once more) there is a library to make controlling the IC exponentially easier. The library page and download files are available from here.  If you need guidance on installing a library, please visit here. However the commands to control the IC are quite simple with the Arduino library.

First of all, include the TLC5940 library, as such:

Then in void setup(); you create the object using the function:

You can insert a number between 0 and 4095 to set the starting PWM (LED brightness) value, however this is optional. Setting an output for display requires two functions, first Tlc.set(l, p); where l is the output (0~15) and p is the PWM brightness level – then execute Tlc.update(); which sends the command to the IC to be executed. The sketch below is easy to follow and understand the process involved.

Moving forward with the demonstration, here is the sketch  – TLC5940demo.pdf, and the video clip of operation:

When the LEDs are glowing from dim to bright and return, we are altering the PWM value of the LEDs to adjust their brightness. This also occurs during the last operation where the LEDs are operating like the bonnet of KITT.

Below is an example of TLC5940 use by JM – he has made an awesome RGB LED cube:

Well once again that’s enough blinkiness for now, again this is another useful IC that helps simplify things and be creative. As always, avoid the risk of counterfeit ICs  – so please avoid disappointment, support your local teams and buy from a reputable distributor. Living in Australia, mine came from element-14 (part number 1226306). So have fun! High resolution photos are available from flickr.

Remember, if you have any questions at all please leave a comment (below). We also have a Google Group dedicated to the projects and related items on the website – please sign up, it’s free and we can all learn something.

Posted in arduino, lesson, part review, tlc5940, tutorialComments (28)


Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: