Tag Archive | "your"

Kit review – nootropic design Hackvision

Hello readers

Time for another kit review – the nootropics design Hackvision,  a nice change from test equipment. The purpose of the Hackvision is to allow the user to create retro-style arcade games and so on that can be played on a monitor or television set with analogue video input. Although the display resolution is only 128 by 96 pixels, this is enough to get some interesting action happening. Frankly I didn’t think the Arduino hardware environment alone was capable of this, so the Hackvision was a pleasant surprise.

Assembly is quick and relatively simple, the instructions are online and easy to follow. All the parts required are included:

partsss

The microcontroller is pre-loaded with two games so you can start playing once construction has finished. However you will need a 5V FTDI cable if you wish to upload new games as the board does not have a USB interface. The board is laid out very clearly, and with the excellent silk-screen and your eyes open construction will be painless. Note that you don’t need to install R4 unless necessary, and if your TV system is PAL add the link which is between the RCA sockets. Speaking of which, when soldering them in, bend down the legs to lock them in before soldering, as such:

Doing so will keep them nicely flush with the PCB whilst soldering. Once finished you should have something like this:

almostdoness

All there is to do now is click the button covers into place, plug in your video and audio RCA leads to a monitor, insert nine volts of DC power, and go:

doness

Nice one. For the minimalist users out there, be careful if playing games as the solder on the rear of the PCB can be quite sharp. Included with the kit is some adhesive rubber matting to attach to the underside to smooth everything off nicely. However only fit this once you have totally finished with soldering and modifying the board, otherwise it could prove difficult to remove neatly later on. Time to play some gamesin the following video you can see how poor my reflexes are when playing Pong and Space Invaders:

[ … the Hackvision also generates sounds, however my cheap $10 video capture dongle from eBay didn’t come through with the audio … ]

Well that takes me back. There are some more contemporary games and demonstration code available on the Hackvision games web page. For the more involved Hackvision gamer, there are points on the PCB to attach your own hand-held controls such as paddles, nunchuks and so on. There is a simple tutorial on how to make your own paddles here.

Those who have been paying attention will have noticed that although the Hackvision PCB is not the standard Arduino Duemilanove-compatible layout, all the electronics are there. Apart from I/O pins used by the game buttons, you have a normal Arduino-style board with video and audio out. This opens up a whole world of possibilities with regards to the display of data in your own Arduino sketches (software). From a power supply perspective, note that the regulator is a 78L05 which is only good for 100mA of current, and the board itself uses around 25mA.

To control the video output, you will need to download and install the hackvision-version arduino-tvout library. Note that this library is slightly different to the generic arduino-tvout library with regards to function definitions and parameters. To make use of the included buttons easier, there is also the controllers library. Here is a simple, relatively self-explanatory sketch that demonstrates some uses of the tvout functions:

And the resulting video demonstration:

I will be the first to admit that my imagination is lacking some days. However with the sketch above hopefully you can get a grip on how the functions work. But there are some very good game implementations out there, as listed on the Hackvision games page. After spending some time with this kit, I feel that there is a lack of documentation that is easy to get into. Sure, having some great games published is good but some beginners’ tutorials would be nice as well. However if you have the time and the inclination, there is much that could be done. In the meanwhile you can do your own sleuthing with regards to the functions by examining the TVout.cpp file in the Hackvision tvout library folder.

For further questions about the Hackvision contact nootropic design or perhaps post on their forum. However the Hackvision has a lot of potential and is an interesting extension of the Arduino-based hardware universe – another way to send data to video monitors and televisions, and play some fun games.If you are looking for a shield-based video output device, perhaps consider the Batsocks Tellymate.

As always, thank you for reading and I look forward to your comments and so on. Furthermore, don’t be shy in pointing out errors or places that could use improvement. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts, follow me on twitter or facebook, or join our Google Group for further discussion.

High resolution images are available on flickr.

[Note – The kit was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

Posted in arduino, games, hackvision, kit review, LCD, microcontrollers, notropicsComments (2)

Kit review – Evil Mad Science Larson Scanner

Hello readers

Time yet again for another kit review. Today’s kit is the Larson Scanner from Evil Mad Science. What a different name for a company; their byline is “DIY and open source hardware for art, education and world domination”. Art? Yes. Education? Definitely. World domination? Possibly – you could use the blinking LEDs to hypnotise the less intelligent world leaders out there.

Anyhow, what is a Larson Scanner? Named in honour of Glen A. Larson the creator of television shows such as Battlestar Galactica and Knight Rider – as this kit recreates the left and right blinking motion used in props from those television shows. For example:

The kit itself is quite inexpensive, easy to assemble – yet can be as complex as you want it to be. More about that later, for now let’s put one together and see how it performs. There are two versions of the kit, one with 5mm clear LEDs and our review model with 10mm diffused red LEDs. The kit arrives inside a huge resealable anti-static bag, as such:

1ss

Upon opening the bag we have the following parts (there was an extra LED and resistor, thanks):

4ss

… the PCB:

3ss

… which is nicely done with a good silk-screen and solder mask. And finally:

5ss

A very handy item – a battery box with power switch. The kit is powered by 2 x AA cells (not included!). And finally, the instructions:

2ss

At this point you can see that this kit is designed for the beginner in mind. The instructions are easy to read, clear, and actually very well done. If you are looking for a kit to get someone interested in electronics and to practice their soldering, you could do a lot worse than use this kit. Construction was very easy, starting with the resistors:

6ss

followed by the capacitor and button:

7ss

then the microcontroller:

8ss

… no IC socket. For a beginners’ kit, perhaps one should have been included. Next was the battery box. Some clever thinking has seen holes in the PCB to run the wires through before soldering into the board – doing so provides a good strain relief for them:

9ss

… and finally the LEDs. Beginners may solder them in one at a time:

10ss

however it is quicker to line them up all at once than solder in one batch:

11ss

… which leaves us with the final product:

13ss

Operation is very simple – the power switch is on the battery box. The button on the PCB controls the speed of LED scrolling, and if held down switches the brightness between low and high. Now for some action video of the Larson Scanner in operation:


Well that really was fun, a nice change from the usual things around here.

But wait, there’s more… although the Larson Scanner is a good training kit, it can also function in other interesting ways. The kit is completely open-source, you can download the PCB layout file, circuit schematic and microcontroller code. Get two or more and link them together to make a really wide LED display – expansion instructions are available from here. If you solder in a 6-pin PCB header to the area marked J1 on the PCB, you can reprogram the microcontroller using an STK500-compatible programmer.

After sitting my Larson Scanner next to the computer tower for a few minutes, I had contemplated fitting it into a 5.25″ drive bay to make my own Cylon PC, however that might be a little over the top. However my PC case has some dust filters on the front, which would allow LEDs to shine through in a nicely subdued way. Mounting the Larson Scanner PCB inside the computer case will be simple, and power can be sourced from the computer power supply – 5V is available from a disk drive power lead.

If you are going to modify your PC in a similar fashion, please read my disclaimer under “boring stuff” first.

The Larson Scanner can run on 3.3V without any alteration to the supplied components. What needs to be done is to use a voltage regulator to convert the 5V down to 3.3V. My example has used a 78L33 equivalent, the TI LP2950 as it is in stock. The power comes from a drive power cable splitter as such:

splitss

You may have a spare power plug in your machine, so can tap from that. 5V is the red lead, and GND is the adjacent black lead. Don’t use yellow – it is 12V. It is then a simple matter of running 5V from the red lead to pin 1 of the regulator, GND from the Larson Scanner and PC together to pin 2, and 3.3V out from the regulator to the PCB 3.3V. Insulation is important with this kind of work, so use plenty of heatshrink:

ldo1ss

… then cover the whole lot up:

ldo2ss

Now to locate a free power plug in the machine. It has been a while since opening the machine – time for a dust clean up as well:

ldo3ss

Mounting the PCB is a temporary affair until I can find some insulated mounting  standoffs:

ldo4ss

However it was worth the effort, the following video clip shows the results in action:


So there you have it. The Larson Scanner is an ideal kit for the beginner, lover of blinking LEDs, and anyone else that wants to have some easy blinking fun. You can buy Larson Scanner kits in Australia from Little Bird Electronics, or directly from Evil Mad Science for those elsewhere.

As always, thank you for reading and I look forward to your comments and so on. Furthermore, don’t be shy in pointing out errors or places that could use improvement. Please subscribe using one of the methods at the top-right of this web page to receive updates on new posts, follow me on twitter or facebook, or join our Google Group for further discussion.

High resolution images are available on flickr.

[Note – The kit was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

Posted in evil mad science, kit review, larson scanner, learning electronics, tutorialComments (0)


Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: