Tag Archive | "interface"

Is this the world’s smallest Arduino-compatible board?

Introducing the Freetronics LeoStick – one very small Arduino Leonardo-compatible** board, in the format of a typical USB memory stick – the board for integration into smaller projects, on-the-go fun when travelling, or minimalism-enthusiasts:

Whether or not the LeoStick is the world’s smallest Arduino-compatible board – it’s pretty darn tiny – for example:

Note that the length includes the USB plug extrusion on the PCB. A lot of small boards on the market may consider themselves to be fully Arduino-compatible, but with a few minor or major caveats – such as not having full USB interface, or using a cut-down MCU such as an ATtiny, or offer less current handling ability. After comparing their specifications with the LeoStick, you can see how much has gone into such a small board:

  • Native USB port built-in, no need for any USB or FTDI cables
  • Two Full Color RGB LEDs on-board! Drive different colored outputs and fun feedback from your sketch right away. One RGB LED is completely programmable, the other does Power, USB RX and TX indication, the RX and TX LEDs can also be controlled.
  • On-board Piezo speaker element, play sounds, tunes and beeps. Can also be used as a knock/vibration sensor
  • Same I/O pins. The LeoStick provides all the same header connections as larger boards, you can connect all the same sensors, actuators, and other inputs and outputs as typical Arduino models.
  • Breadboard compatible, has 0.1″ pitch pads and header pins can be fitted underneath
  • 500mA polyfuse and protection on the USB port
  • ATmega32U4 microcontroller, Arduino compatible with on-board USB, 32K Flash, 2.5K RAM, 1K EEPROM at 16MHz
  • ISP 6-pin connector for advanced programming of the ATmega32U4 MCU

Here is the underside of the LeoStick , showing the piezo speaker:

And here is a quick video of the LeoStick in action:

** Although this is a newly-released product, it does rely on a modified beta version of the upcoming Arduino Leonardo bootloader. There are some known issues with Windows 7 64-bit drivers and some library functions don’t work perfectly yet. Any firmware or Arduino Leonardo compatible support should not be considered to be final release firmware or in any way an official Arduino. At Freetronics’ request, please don’t hassle the Arduino team with support or requests related to this board – they’re solely the responsibility of Freetronics.

Nevertheless there is a growing and vibrant support forum where you can see examples of the LeoStick in action and discuss other subjects and issues. The LeoStick is also a very complete ATmega32U4 breakout and USB board by itself and the LeoStick can be programmed directly from the supplied standard ISP header by AVR Studio, Mac OSX-AVR, avrdude, WinAVR etc.

The LeoStick  is also new to us here as well, and we look forward to integrating it into projects in the near future, as well as having a board to experiment with when travelling. As we always say – if it meets your needs or you want to try something new, you could do a lot worse than getting yourself a LeoStickIf you are interested in learning how to use Arduino in general – check out our tutorial here. For more discussion and support information for the LeoStick consult the forum or product web page.

Disclaimer – The LeoStick board reviewed in this article was a promotional consideration made available by Freetronics

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, freetronics, leonardo, leostick, review

Results – January 2012 Competition

Competition over!

Posted in competitionComments (0)

January 2012 Competition

Competition over.

Posted in competition

Review: Mayhew Labs “Go Between” Arduino Shield

Hello readers

In this article we examine one of those products that are really simple yet can solve some really annoying problems. It is the “Go Between” Arduino shield from Mayhew Labs. What does the GBS do? You use it to solve a common problem that some prolific Arduino users can often face – how do I use two shields that require the same pins?

Using a clever matrix of solder pads, you can change the wiring between the analogue and digital pins. For example, here is the bare shield:

gbsss

Now for an example problem. You have two shields that need access to digital pins 3, 4 and 5 as also analogue pins 4 and 5. We call one shield the “top shield” which will sit above the GBS, and the second shield the “bottom” shield which will sit between the Arduino and the GBS. To solve the problem we will redirect the top shield’s D3~5 to D6~8, and A4~5 to A0~1.

To redirect a pin (for example D3 to D6), we first locate the number along the “top digital pins” horizontal of the matrix (3). Then find the destination “bottom” pin row (6). Finally, bridge that pad on the matrix with solder. Our D3 to D6 conversion is shown with the green dot in the following:

gbsss2

Now for the rest, diverting D4 and D5 to D7 and D8 respectively, as well as analogue pins 4 and 5 to 0 and 1:

gbsss3

The next task is to connect the rest of the non-redirected pins. For example, D13 to D13. We do this by again bridging the matching pads:

gbsss4

Finally the sketch needs to be rewritten to understand that the top shield now uses D6~8 and A0~1. And we’re done!

Try not to use too much solder, as you could accidentally bridge more pads than necessary. And you can always use some solder wick to remove the solder and reuse the shield again (and again…). Now the genius of the shield becomes more apparent.

The only downside to this shield is the PCB design – the days of square corners should be over now:
gbscornersss1

It is a small problem, but one nonetheless. Hopefully this is rectified in the next build run. Otherwise the “Go Between” Shield is a solution to a problem you may have one day, so perhaps keep one tucked away for “just in case”.

While we’re on the subject of Arduino shield pinouts, don’t forget to check out Jon Oxer’s shieldlist.org when researching your next Arduino shield – it is the largest and most comprehensive catalogue of submitted Arduino shields in existence.

[Note – the “Go Between” Shield was purchased by myself personally and reviewed without notifying the manufacturer or retailer]

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, go between, hardware hacking, mayhew labs, product review, reviewComments (0)

Tutorial: Arduino and multiple thumbwheel switches

This is an addendum to chapter forty of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – a series of articles on the Arduino universe. The first chapter is here, the complete series is detailed here. Any files from tutorials will be found here.

Updated 24/11/2012

This article continues with the push-wheel switches introduced in chapter 40. In the previous article, we learned how to read the value of a single digit using the digital pins of our Arduino. With this instalment we will examine how to read four digits – and not waste all those digital pins in the process. Instead, we will use the Microchip MCP23017 16-bit port expander IC that communicates via the I2C bus. It has sixteen digital input/output pins that we can use to read the status of each switch.

Before moving forward, please note that some assumed knowledge is required for this article – the I2C bus (parts one and two) and the MCP23017.

We first will describe the hardware connections, and then the Arduino sketch. Recall the schematic used for the single switch example:

ex40p1_schem

When the switch was directly connected to the Arduino, we read the status of each pin to determine the value of the switch. We will do this again, on a larger scale using the MCP23017. Consider the pinout diagram:

We have 16 pins, which allows four switches to be connected. The commons for each switch still connect to 5V, and each switch contact still has a 10k pull-down resistor to GND. Then we connect the 1,2,4,8 pins of digit one to GPBA0~3; digit two’s 1,2,4,8 to GPA4~7; digit three’s 1,2,4,8 to GPB0~3 and digit four’s 1,2,4,8 to GPB4~7. For demonstration purposes we are using the Gravitech 7-segment shield as reviewed in the past.

Now how do we read the switches? All those wires may cause you to think it is difficult, but the sketch is quite simple. When we read the value of GPBA and B, one byte is returned for each bank, with the most-significant bit first. Each four bits will match the setting of the switch connected to the matching I/O pins.

For example, if we request the data for both IO banks and the switches are set to 1 2 3 4 – bank A will return 0010 0001 and bank B will return 0100 0011. We use some bitshift operations to separate each four bits into a separate variable – which leaves us with the value of each digit. For example, to separate the value of switch four, we shift the bits from bank B >> 4. This pushes the value of switch three out, and the blank bits on the left become zero. To separate the value for switch three, we use a compound bitwise & – which leaves the value of switch three.

Below is a breakdown of the binary switch values – it shows the raw GPIOA and B byte values, then each digit’s binary value, and decimal value:

So let’s see the demonstration sketch :

And for the non-believers … a video demonstration:

So there you have it. Four digits instead of one, and over the I2C bus conserving Arduino digital I/O pins. Using eight MCP23017s you could read 32 digits at once. Have fun with doing that!

LEDborder

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, education, I2C, lesson, MCP23017, microcontrollers, push wheel switch, tutorialComments (2)

Tutorial: Arduino and Thumbwheel switches

This is chapter forty of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – a series of articles on the Arduino universe. The first chapter is here, the complete series is detailed here. Any files from tutorials will be found here.

[Updated 20/01/13]

In this article we go back to the past via the use of push-wheel/thumbwheel switches with out Arduino systems. Here are some examples sourced from somewhere on eBay:

For the uninitiated, each switch is one vertical segment and they can be connected together to form various sizes. You can use the buttons to select from digits zero through to nine. There are alternatives available that have a wheel you can move with your thumb instead of the increase/decrease buttons. Before the days of fancy user interfaces these switches were quite popular methods for setting numerical data entry. However they are still available today, so let’s see how they work and how we can use them. The switch’s value is made available via binary-coded decimal. Consider the rear of the switch:

We have common on the left, then contacts for 1, 2, 4 and 8. If you apply a small voltage (say 5V) to common, the value of the switch can be measured by adding the values of the contacts that are in the HIGH state. For example, if you select 3 – contacts 1 and 2 will be at the voltage at common. The values between zero and nine can be represented as such:

bcdtable

By now you should realise that it would be easy to read the value of a switch – and you’re right, it is. We can connect 5V to the common,  the outputs to digital input pins of our Arduino boards, then use digitalRead() to determine the value of each output. In the sketch we use some basic mathematics to convert the BCD value to a decimal number. So let’s do that now.

From a hardware perspective, we need to take into account one more thing – the push-wheel switch behaves electrically like four normally-open push buttons. This means we need to use pull-down resistors in order to have a clear difference between high and low states. So the schematic for one switch would be (click image to enlarge):

ex40p1_schem

Now it is a simple matter to connect the outputs labelled 1, 2, 4, and 8 to (for example) digital pins 8, 9, 10 and 11. Connect 5V to the switch ‘C’ point, and GND to … GND. Next, we need to have a sketch that can read the inputs and convert the BCD output to decimal. Consider the following sketch:

The function readSwitch()  is the key. It calculates the value of the switch by adding the numerical representation of each switch output and returns the total as its result. For this example we used a numerical display shield that is controlled by the NXP SAA1064. If you don’t have one, that’s ok – the results are also sent to the serial monitor. Now, let’s see it in action:

Ok it doesn’t look like much, but if you need numerical entry it saves a lot of physical space and offers a precise method of entry.

So there you have it. Would you actually use these in a project? For one digit – yes. For four? Probably not – perhaps it would be easier to use a 12-digit keypad. There’s an idea…  But for now I hope you enjoyed reading this as much as I did writing it for you.

Update! See the addendum for using four switches at once to read four-digit numbers here

LEDborder

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, education, I2C, lesson, microcontrollers, push wheel switches, tutorialComments (8)

Tutorial: Gravitech Arduino Nano MP3 Player

Hello readers

[Update: 21/05/2013. Tutorial now out of date, and I don’t have a Nano to test it with the new code. Try this instead. If you have hardware questions or enquiries relating to the Arduino Nano or MP3 board, please direct them to Gravitech via their contact page.

Posted in arduino, gravitech, learning electronics, lesson, microcontrollers, mp3, tutorial

Tutorial: Arduino and the NXP SAA1064 4-digit LED display driver

Learn how to use the NXP SAA1064 LED display driver IC in chapter thirty-nine of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – a series of articles on the Arduino universe.

Updated 19/01/2013

In this article we investigate controlling the NXP (formerly Philips) SAA1064 4-digit LED display driver IC with Arduino and the I2C bus interface. If you are not familiar with using the I2C bus, please read my tutorials (parts one and two) before moving on. Although the SAA1064 is not the newest on the market, it is still popular, quite inexpensive and easy to source. Furthermore as it is controlled over the I2C bus – you don’t waste any digital I/O pins on your Arduino, and you can also operate up to four SAA1064s at once (allowing 16 digits!). Finally, it has a constant-current output – keeping all the segments of your LED display at a constant brightness (which is also adjustable).  So let’s get started…

Here is an example of the SAA1064 in SOIC surface mount packaging:

It measures around 15mm in length. For use in a solderless breadboard, I have soldered the IC onto a through-hole adaptor:

The SAA1064 is also available in a regular through-hole DIP package. At this point, please download the data sheet (.pdf) as you will need to refer to it during the article. Next, our LED display examples. We need common-anode displays, and for this article we use two Agilent HDSP521G two-digit modules (data sheet [.pdf]) as shown below:

For the uninitiated – a common anode display has all the segments’ anodes connected together, with the cathodes terminated separately. For example, our LED displays are wired as such:

Notice the anodes for the left digit are pin 14, and the right digit pin 13. A device that is connected to all the cathodes (e.g. our SAA1064) will control the current flow through each element – thereby turning each segment on (and controlling the brightness) or off. Our SAA1064 is known as a current-sink as the current flows through the LED, and then sinks into the IC.

Now, let’s get it connected. There is an excellent demonstration circuit on page twelve of the data sheet that we will follow for our demonstrations:

It looks pretty straight-forward, and it is. The two transistors are standard NPN-type, such as PN2222. The two transistors are used to each turn on or off a pair of digits – as the IC can only drive digits 1+3 or 2+4 together. (When presented in real life the digits are numbered 4-3-2-1). So the pairs are alternatively turned on and off at a rapid rate, which is controlled by the capacitor between pin 2 and GND. The recommended value is 2.7 nF. At the time of writing, I didn’t have that value in stock, so chose a 3.3 nF instead. However due to the tolerance of the ceramic capacitor it was actually measured to be 2.93 nF:

So close enough to 2.7 nF will be OK. The other capacitor shown between pins 12 and 13 is a standard 0.1 uF smoothing capacitor. Pin 1 on the SAA1064 is used to determine the I2C bus address – for our example we have connected it straight to GND (no resistors at all) resulting in an address of 0x70. See the bottom page five of the data sheet for other address options. Power for the circuit can be taken from your Arduino’s 5V pin – and don’t forget to connect the circuit GND to Arduino GND. You will also use 4.7k ohm pull-up resistors on the SDA and SCL lines of the I2C bus.

The last piece of the schematic puzzle is how to connect the cathodes of the LED displays to the SAA1064. Display pins 14 and 13 are the common anodes of the digits.

The cathodes for the left-hand display module:

  • LED display pins 4, 16, 15, 3, 2, 1, 18 and 17 connect to SAA1064 pins 22, 21, 20, 19, 18, 17, 16 and 15 respectively (that is, LED pin 4 to IC pin 22, etc.);
  • LED display pins 9, 11, 10, 8, 6, 5, 12 and 7 also connect to SAA1064 pins 22, 21, 20, 19, 18, 17, 16 and 15 respectively.
The cathodes for the right-hand display module:
  • LED display pins 4, 16, 15, 3, 2, 1, 18 and 17 connect to SAA1064 pins 3, 4, 5, 6, 7, 8, 9 and 10 respectively;
  • LED display pins  9, 11, 10, 8, 6, 5, 12 and 7 also connect to SAA1064 pins 3, 4, 5, 6, 7, 8, 9 and 10 respectively.
Once your connections have been made, you could end up with spaghetti junction like this…
Now it is time to consider the Arduino sketch to control out SAA1064. Each write request to the SAA1064 requires several bytes. We either send a control command (to alter some of the SAA1064 parameters such as display brightness) or a display command (actually display numbers). For our example sketches the I2C bus address “0x70 >> 1” is stored in the byte variable saa1064. First of all, let’s look at sending commands, as this is always done first in a sketch to initiate the SAA1064 before sending it data.
As always, we send the address down the I2C bus to awaken the SAA1064 using

Then the next byte is the instruction byte. If we send zero:

… the IC expects the next byte down the bus to be the command byte. And finally our command byte:

The control bits are described on page six of the data sheet. However – for four-digit operation bits 0, 1 and 2 should be 1; bit 3 should be 0; and bits 4~6 determine the amount of current allowed to flow through the LED segments. Note that they are cumulative, so if you set bits 5 and 6 to 1 – 18 mA of current will flow. We will demonstrate this in detail later on.

Next, to send actual numbers to be displayed is slightly different. Note that the digits are numbered (from left to right) 4 3 2 1. Again, we first send the address down the I2C bus to awaken the SAA1064 using

Then the next byte is the instruction byte. If we send 1, the next byte of data will represent digit 1. If that follows with another byte, it will represent digit 2. And so on. So to send data to digit 1, send

Although sending binary helps with the explanation, you can send decimal equivalents. Next, we send a byte for each digit (from right to left). Each bit in the byte represents a single LED element of the digit as well as the decimal point. Note how the elements are labelled (using A~G and DP) in the following image:

The digit bytes describe which digit elements to turn on or off. The bytes are described as such: Bpgfedcba. (p is the decimal point). So if you wanted to display the number 7, you would send B00000111 – as this would turn on elements a, b and c. To add the decimal point with 7 you would send B10000111. You can also send the byte as a decimal number. So to send the digit 7 as a decimal, you would send 7 – as 00000111 in base-10 is 7. To include the decimal point, send 135 – as 100000111 in base-10 is 135. Easy! You can also create other characters such as A~F for hexadecimal. In fact let’s do that now in the following example sketch:

In the function initDisplay() you can see an example of using the instruction then the control byte. In the function clearDisplay() you can see the simplest form of sending digits to the display – we send 0 for each digit to turn off all elements in each digit. The bytes that define the digits 0~9 and A~F are stored in the array digits[]. For example, the digit zero is 63 in decimal, which is B00111111 in binary – which turns on elements a,b,c,d,e and f. Finally, notice the second loop in displayDigits() – 128 is added to each digit value to turn on the decimal point. Before moving on, let’s see it in action:

Our next example revisits the instruction and control byte – we change the brightness of the digits by setting bits 4~6 in the control byte. Each level of brightness is separated into a separate function, and should be self-explanatory. Here is the sketch:

And again, see it in action:

For our final example, there is a function displayInteger(a,b) which can be used to easily display numbers from 0~9999 on the 4-digit display. The parameter a is the number to display, and b is the leading-zero control – zero – off, one – on. The function does some maths on the integet to display and separates the digits for each column, then sends them to the SAA1064 in reverse order. By now you should be able to understand the following sketch:

And the final example in action:

So there you have it – another useful IC that can be used in conjunction with our Arduino systems to make life easier and reduce the required digital output pins.

LEDborder

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, education, I2C, LED, lesson, microcontrollers, SAA1064, tutorialComments (27)

Tutorial: Arduino and a Thermal Printer

Use inexpensive thermal printers with Arduino in chapter thirty-eight of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – a series of articles on the Arduino universe. The first chapter is here, the complete series is detailed here.

Updated 05/02/2013

In this article we introduce the inexpensive thermal printer that has recently become widely available from Sparkfun and their resellers. The goal of the article is to be as simple as possible so you can get started without any problems or confusion. In the past getting data from our Arduino to a paper form would either have meant logging it to an SD card then using a PC to finish the job, or perhaps viewing said data on an LCD then writing it down. Not any more – with the use of this cheap and simple serial printer. Before we get started, here is a short demonstration video of it in action:


Not bad at all considering the price. Let’s have a look in more detail. Here is the printer and two matching rolls of thermal paper:

… and the inside of the unit:

Loading paper is quite simple, just drop the roll in with the end of the paper facing away from you, pull it out further than the top of the front lip, then close the lid. The paper rolls required need to be 57mm wide and have a diameter of no more than 39mm. For example. There is a piece of white cardboard stuck to the front – this is an economical cover that hides some of the internals. Nothing of interest for us in there. The button next to the LED on the left is for paper advance, and the LED can blink out the printer status.

From a hardware perspective wiring is also very simple. Looking at the base of the printer:

… there are two connections. On the left is DC power, and data on the right. Thankfully the leads are included with the printer and have the plugs already fitted – a great time saver. You may also want to fit your own rubber feet to stop the printer rocking about.

Please note – you need an external power supply with a voltage of between 5 and 9 volts DC that can deliver up to 1.5 amps of current. When idling the printer draws less than 10 milliamps, but when printing it peaks at around 1.47 A. So don’t try and run it from your Arduino board. However the data lines are easy, as the printer has a serial interface we only need to connect printer RX to Arduino digital 3, and printer TX to Arduino digital 2, and GND to … GND! We will use a virtual serial port on pins 2 and 3 as 0 and 1 will be taken for use with the serial monitor window for debugging and possible control purposes.

If you want to quickly test your printer – connect it to the power, drop in some paper, hold down the feed button and turn on the power. It will quickly produce a test print.

Next we need to understand how to control the printer in our sketches. Consider this very simple sketch:

After ensuring your printer is connected as described earlier, and has the appropriate power supply and paper – uploading the sketch will result in the following:

Now that the initial burst of printing excitement has passed, let’s look at the sketch and see how it all works. The first part:

configures the virtual serial port and creates an instance for us to refer to when writing to the printer. Next, four variables are defined. These hold parameters used for configuring the printer. As the printer works with these settings there is no need to alter them, however if you are feeling experimental nothing is stopping you. Next we have the function initPrinter(). This sets a lot of parameters for the printer to ready itself for work. We call initPrinter() only once – in void setup(); For now we can be satisfied that it ‘just works’.

Now time for action – void loop(). Writing text to the printer is as simple as:

You can also use .println to advance along to the next line. Generally this is the same as writing to the serial monitor with Serial.println() etc. So nothing new there. Each line of text can be up to thirty-two characters in length.

The next thing to concern ourselves with is sending commands to the printer. You may have noticed the line

This sends the command to advance to the next line (in the old days we would say ‘carriage return and line feed’). There are many commands available to do various things.  At this point you will need to refer to the somewhat amusing user manual.pdf. Open it up and have a look at section 5.2.1 on page ten. Notice how each command has an ASCII, decimal and hexadecimal equivalent? We will use the decimal command values. So to send them, just use:

Easy. If the command has two or more values (for example, to turn the printer offline [page 11] ) – just send each value in a separate statement. For example:

… will put the printer into offline mode. Notice how we used the variable “zero” for 0 – you can’t send a zero by itself. So we assign it to the variable and send that instead. Odd.

For out next example, let’s try out a few more commands:

  • Underlined text (the printer seemed to have issues with thick underlining, however your experience may vary)
  • Bold text
  • Double height and width
Here is the sketch:

And the results:

Frankly bold doesn’t look that bold, so I wouldn’t worry about it too much. However the oversized characters could be very useful, and still print relatively quickly.

Next on our list are barcodes. A normal UPC barcode has 12 digits, and our little printer can generate a variety of barcode types – see page twenty-two of the user manual. For our example we will generate UPC-A type codes and an alphanumeric version. Alphanumeric barcodes need capital letters, the dollar sign, percent sign, or full stop. The data is kept in an array of characters named … barCode[]  and barCode[]2. Consider the functions printBarcode(), printBarcodeThick()  and printBarcodeAlpha() in the following example sketch:

Notice in printBarcodeThick() we make use of the ability to change the vertical size of the barcode – the height in pixels is the third parameter in the group. And here is the result:

So there you have it – another practical piece of hardware previously considered to be out of our reach – is now under our control. Now you should have an understanding of the basics and can approach the other functions in the user guide with confidence. Please keep in mind that the price of this printer really should play a large part in determining suitability for a particular task. It does have issues printing large blocks of pixels, such as the double-width underlining and inverse text. This printer is great but certainly not for commercial nor high-volume use. That is what professional POS printers from Brother, Star, Epson, etc., are for. However for low-volume, personal or hobby use this printer is certainly a deal. As always, now it is up to you and your imagination to put this to use or get up to other shenanigans.

This article would not have been possible without the example sketches provided by Nathan Seidle, the founder and CEO of Sparkfun. If you meet him, shout him a beer.  Please don’t knock off bus tickets or so on. I’m sure there are heavy penalties for doing so if caught.

LEDborder

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, COM-10438, COM-10560, education, lesson, microcontrollers, printer, sparkfun, thermal, tutorialComments (11)

Tutorial: Arduino and the SPI bus part II

This is chapter thirty-six of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – A seemingly endless series of articles on the Arduino universe. The first chapter is here, the complete series is detailed here

[Updated 10/01/2013]

This is the second of several chapters in which we are investigating the SPI data bus, and how we can control devices using it with our Arduino systems. If you have not done so already, please read part one of the SPI articles. Again we will learn the necessary theory, and then apply it by controlling a variety of devices. As always things will be kept as simple as possible.

First on our list today is the use of multiple SPI devices on the single bus. We briefly touched on this in part one, by showing how multiple devices are wired, for example:

Notice how the slave devices share the clock, MOSI and MISO lines – however they both have their own chip select line back to the master device. At this point a limitation of the SPI bus becomes prevalent – for each slave device we need another digital pin to control chip select for that device. If you were looking to control many devices, it would be better to consider finding I2C solutions to the problem. To implement multiple devices is very easy. Consider the example 34.1 from part one – we controlled a digital rheostat. Now we will repeat the example, but instead control four instead of one. For reference, here is the pinout diagram:

Doing so may sound complex, but it is not. We connect the SCK, MOSI and  MISO pins together, then to Arduino pins D13, D11, D12 respectively. Each CS pin is wired to a separate Arduino digital pin. In our example rheostats 1 to 4 connect to D10 through to D7 respectively. To show the resistance is changing on each rheostat, there is an LED between pin 5 and GND and a 470 ohm resistor between 5V and pin 6. Next, here is the sketch:

Although the example sketch may be longer than necessary, it is quite simple. We have four SPI devices each controlling one LED, so to keep things easy to track we have defined led1~led4 to match the chip select digital out pins used for each SPI device. Then see the first four lines in void setup(); these pins are set to output in order to function as required. Next – this is very important – we set the pins’ state to HIGH. You must do this to every chip select line! Otherwise more than one CS pins may be initially low in some instances and cause the first data sent from MOSI to travel along to two or more SPI devices. With LEDs this may not be an issue, but for motor controllers … well it could be.

The other point of interest is the function

We pass the value for the SPI device we want to control, and the value to send to the device. The value for l is the chip select value for the SPI device to control, and ranges from 10~7 – or as defined earlier, led1~4. The rest of the sketch is involved in controlling the LED’s brightness by varying the resistance of the rheostats. Now to see example 36.1 in action via the following video clip:


(If you are wondering what I have done to the Freetronics board in that video, it was to add a DS1307 real-time clock IC in the prototyping section).

Next on the agenda is a digital-to-analogue converter, to be referred to using the acronym DAC. What is a DAC? In simple terms, it accepts a numerical value between zero and a maximum value (digital) and outputs a voltage between the range of zero and a maximum relative to the input value (analogue). One could consider this to be the opposite of the what we use the function analogRead(); for. For our example we will use a Microchip MCP4921 (data sheet.pdf):

(Please note that this is a beginners’ tutorial and is somewhat simplified). This DAC has a 12-bit resolution. This means that it can accept a decimal number between 0 and 4095 – in binary this is 0 to 1111 1111 1111 (see why it is called 12-bit) – and the outpout voltage is divided into 4096 steps. The output voltage for this particular DAC can fall between 0 and just under the supply voltage (5V). So for each increase of 1 in the decimal input value, the DAC will output around 1.221 millivolts.

It is also possible to reduce the size of the voltage output steps by using a lower reference voltage. Then the DAC will consider the reference voltage to be the maximum output with a value of 4095. So (for example) if the reference voltage was 2.5V, each increase of 1 in the decimal input value, the DAC will output around 0.6105 millivolts. The minimum reference voltage possible is 0.8V, which offers a step of 200 microvolts (uV).

The output of a DAC can be used for many things, such as a function generator or the playback of audio recorded in a digital form. For now we will examine how to use the hardware, and monitoring output on an oscilloscope. First we need the pinouts:

By now these sorts of diagrams shouldn’t present any problems. In this example, we keep pin 5 permanently set to GND; pin 6 is where you feed in the reference voltage – we will set this to +5V; AVss is GND; and Vouta is the output signal pin – where the magic comes from 🙂 The next thing to investigate is the MCP4921’s write command register:

Bits 0 to 11 are the 12 bits of the output value; bit 15 is an output selector (unused on the MPC4921); bit 14 controls the input buffer; bit 13 controls an inbuilt output amplifier; and bit 12 can shutdown the DAC. Unlike previous devices, the input data is spread across two bytes (or a word of data). Therefore a small amount of work needs to be done to format the data ready for the DAC. Let’s explain this through looking at the sketch for example 36.2 that follows. The purpose of the sketch is to go through all possible DAC values, from 0 to 4095, then back to 0 and so on.

First. note the variable outputvalue – it is a word, a 16-bit unsigned variable. This is perfect as we will be sending a word of data to the DAC. We put the increasing/decreasing value for a into outputValue. However as we can only send bytes of data at a time down the SPI bus, we will use the function highbyte() to separate the high side of the word (bits 15~8) into a byte variable called data.

We then use the bitwise AND and OR operators to set the parameter bits 15~12. Then this byte is sent to the SPI bus. Finally, the function lowbyte() is used to send the low side of the word (bits 7~0) into data and thence down the SPI bus as well.

Now for our demonstration sketch:

And a quick look at the DAC in action via an oscilloscope:

By now we have covered in detail how to send data to a device on the SPI bus. But how do we receive data from a device?

Doing so is quite simple, but some information is required about the particular device. For the rest of this chapter, we will use the Maxim DS3234 “extremely accurate” real-time clock. Please download the data sheet (.pdf) now, as it will be referred to many times.

The DS3234 is not available in through-hole packaging, so we will be using one that comes pre-soldered onto a very convenient breakout board:

It only takes a few moments to solder in some header pins for breadboard use. The battery type is CR1220 (12 x 2.0mm, 3V); if you don’t have a battery you will need to short out the battery holder with some wire otherwise the IC will not work. Readers have reported that the IC doesn’t keep time if the USB and external power are both applied to the Arduino at the same time.

A device will have one or more registers where information is read from and written to. Look at page twelve of the DS3234 data sheet, there are twenty-three registers, each containing eight bits (one byte) of data. Please take note that each register has a read and write address. An example – to retrieve the contents of the register at location 08h (alarm minutes) and place it into the byte data we need to do the following:

Don’t forget to take note of  the function SPI.setBitOrder(MSBFIRST); in your sketch, as this also determines the bit order of the data coming from the device. To write data to a specific address is also quite simple, for example:

Up to this point, we have not concerned ourselves with what is called the SPI data mode. The mode determines how the SPI device interprets the ‘pulses’ of data going in and out of the device. For a well-defined explanation, please read this article. With some devices (and in our forthcoming example) the data mode needs to be defined. So we use:

to set the data mode, within void(setup);. To determine a device’s data mode, as always – consult the data sheet. With our DS3234 example, the mode is mentioned on page 1 under Features List.

Finally, let’s delve a little deeper into SPI via the DS3234. The interesting people at Sparkfun have already written a good demonstration sketch for the DS3234, so let’s have a look at that and deconstruct it a little to see what is going on. You can download the sketch below from here, then change the file extension from .c to .pde.

Don’t let the use of custom functions and loops put you off, they are there to save time. Looking in the function SetTimeDate();, you can see that the data is written to the registers 80h through to 86h (skipping 83h – day of week) in the way as described earlier (set CS low, send out address to write to, send out data, set CS high). You will also notice some bitwise arithmetic going on as well. This is done to convert data between binary-coded decimal and decimal numbers.

Why? Go back to page twelve of the DS3234 data sheet and look at (e.g.) register 00h/80h – seconds. The bits 7~4 are used to represent the ‘tens’ column of the value, and bits 3~0 represent the ‘ones’ column of the value. So some bit shifting is necessary to isolate the digit for each column in order to convert the data to decimal. For other ways to convert between BCD and decimal, see the examples using the Maxim DS1307 in chapter seven.

Finally here is another example of reading the time data from the DS3234:

So there you have it – more about the world of the SPI bus and how to control the devices within.

LEDborder

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, BOB-10160, dac, DS3234, education, learning electronics, lesson, MCP4162, MCP4921, microcontrollers, SPI, tutorial, UncategorizedComments (14)

Tutorial: Arduino and the SPI bus

Learn how to use the SPI data bus with Arduino in chapter thirty-four of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – A seemingly endless tutorial on the Arduino universe. The first chapter is here, the complete series is detailed here

[Updated 10/01/2013]

This is the first of two chapters in which we are going to start investigating the SPI data bus, and how we can control devices using it with our Arduino systems. The SPI bus may seem to be a complex interface to master, however with some brief study of this explanation and practical examples you will soon become a bus master! To do this we will learn the necessary theory, and then apply it by controlling a variety of devices. In this tutorial things will be kept as simple as possible.

But first of all, what is it? And some theory…

SPI is an acronym for “Serial Peripheral Interface”. It is a synchronous serial data bus – data can travel in both directions at the same time, as opposed to (for example) the I2C bus that cannot do so. To allow synchronous data transmission, the SPI bus uses four wires. They are called:

  • MOSI – Master-out, Slave-in. This line carries data from our Arduino to the SPI-controlled device(s);
  • MISO – Master-in, Slave out. This line carries data from the SPI-controlled device(s) back to the Arduino;
  • SS – Slave-select. This line tells the device on the bus we wish to communicate with it. Each SPI device needs a unique SS line back to the Arduino;
  • SCK – Serial clock.

Within these tutorials we consider the Arduino board to be the master and the SPI devices to be slaves. On our Arduino Duemilanove/Uno and compatible boards the pins used are:

  • SS – digital 10. You can use other digital pins, but 10 is generally the default as it is next to the other SPI pins;
  • MOSI – digital 11;
  • MISO – digital 12;
  • SCK – digital 13;

Arduino Mega users – MISO is 50, MOSI is 51, SCK is 52 and SS is usually 53. If you are using an Arduino Leonardo, the SPI pins are on the ICSP header pins. See here for more information. You can control one or more devices with the SPI bus. For example, for one device the wiring would be:

Data travels back and forth along the MOSI and MISO lines between our Arduino and the SPI device. This can only happen when the SS line is set to LOW. In other words, to communicate with a particular SPI device on the bus, we set the SS line to that device to LOW, then communicate with it, then set the line back to HIGH. If we have two or more SPI devices on the bus, the wiring would resemble the following:


Notice how there are two SS lines – we need one for each SPI device on the bus. You can use any free digital output pin on your Arduino as an SS line. Just remember to have all SS lines high except for the line connected to the SPI device you wish to use at the time.

Data is sent to the SPI device in byte form. You should know by now that eight bits make one byte, therefore representing a binary number with a value of between zero and 255. When communicating with our SPI devices, we need to know which way the device deals with the data – MSB or LSB first. MSB (most significant bit) is the left-hand side of the binary number, and LSB (least significant bit) is the right-hand side of the number. That is:

Apart from sending numerical values along the SPI bus, binary numbers can also represent commands. You can represent eight on/off settings using one byte of data, so a device’s parameters can be set by sending a byte of data. These parameters will vary with each device and should be illustrated in the particular device’s data sheet. For example, a digital potentiometer IC with six pots:

sdata

This device requires two bytes of data. The ADDR byte tells the device which of six potentiometers to control (numbered 0 to 5), and the DATA byte is the value for the potentiometer (0~255). We can use integers to represent these two values. For example, to set potentiometer number two to 125, we would send 2 then 125 to the device.

How do we send data to SPI devices in our sketches?

First of all, we need to use the SPI library. It is included with the default Arduino IDE installation, so put the following at the start of your sketch:

Next, in void.setup() declare which pin(s) will be used for SS and set them as OUTPUT. For example,

where ss has previously been declared as an integer of value ten. Now, to activate the SPI bus:

and finally we need to tell the sketch which way to send data, MSB or LSB first by using

or

When it is time to send data down the SPI bus to our device, three things need to happen. First, set the digital pin with SS to low:

Then send the data in bytes, one byte at a time using:

Value can be an integer/byte between zero and 255. Finally, when finished sending data to your device, end the transmission by setting SS high:

Sending data is quite simple. Generally the most difficult part for people is interpreting the device data sheet to understand how commands and data need to be structured for transmission. But with some practice, these small hurdles can be overcome.

Now for some practical examples!

Time to get on the SPI bus and control some devices. By following the examples below, you should gain a practical understanding of how the SPI bus and devices can be used with our Arduino boards.

Example 34.1

Our first example will use a simple yet interesting part – a digital potentiometer (we also used one in the I2C tutorial). This time we have a Microchip MCP4162-series 10k rheostat:


Here is the data sheet.pdf for your perusal. To control it we need to send two bytes of data – the first byte is the control byte, and thankfully for this example it is always zero (as the address for the wiper value is 00h [see table 4-1 of the data sheet]).  The second byte is the the value to set the wiper, which controls the resistance. So to set the wiper we need to do three things in our sketch…

First, set the SS (slave select) line to low:

Then send the two byes of data:

Finally set the SS line back to high:

Easily done. Connection to our Arduino board is very simple – consider the MCP4162 pinout:

Vdd connects to 5V, Vss to GND, CS to digital 10, SCK to digital 13, SDI to digital 11 and SDO to digital 12. Now let’s run through the available values of the MCP4162 in the following sketch:

Now to see the results of the sketch. In the following video clip, a we run up through the resistance range and measure the rheostat value with a multimeter:

Before moving forward, if digital potentiometers are new for you, consider reading this short guide written by Microchip about the differences between mechanical and digital potentiometers.

Example 34.2

In this example, we will use the Analog Devices AD5204 four-channel digital potentiometer (data sheet.pdf). It contains four 10k ohm linear potentiometers, and each potentiometer is adjustable to one of 256 positions. The settings are volatile, which means they are not remembered when the power is turned off. Therefore when power is applied the potentiometers are all pre set to the middle of the scale. Our example is the SOIC-24 surface mount example, however it is also manufactured in DIP format as well.

 

To make life easier it can be soldered onto a SOIC breakout board which converts it to a through-hole package:

ad5204boardss

In this example, we will control the brightness of four LEDs. Wiring is very simple. Pinouts are in the data sheet.pdf.

ex34p2schematic

And the sketch:

The function allOff() and allOn() are used to set the potentiometers to minimum and maximum respectively. We use allOff() at the start of the sketch to turn the LEDs off. This is necessary as on power-up the wipers are generally set half-way. Furthermore we use them in the blinkAll() function to … blink the LEDs. The function setPot() accepts a wiper number (0~3) and value to set that wiper (0~255). Finally the function indFade() does a nice job of fading each LED on and off in order – causing an effect very similar to pulse-width modulation.

Finally, here it is in action:

Example 34.3

In this example, we will use use a four-digit, seven-segment LED display that has an SPI interface. Using such a display considerably reduces the amount of pins required on the micro controller and also negates the use of shift register ICs which helps reduce power consumption and component count. The front of our example:

7segfrss

and the rear:

7segrearss

Thankfully the pins are labelled quite clearly. Please note that the board does not include header pins – they were soldered in after receiving the board. Although this board is documented by Sparkfun there seems to be issues in the operation, so instead we will use a sketch designed by members of the Arduino forum. Not wanting to ignore this nice piece of hardware we will see how it works and use it with the new sketch from the forum.

Again, wiring is quite simple:

  • Board GND to Arduino GND
  • Board VCC to Arduino 5V
  • Board SCK to Arduino D12
  • Board SI to Arduino D11
  • Board CSN to Arduino D10

The sketch is easy to use, you need to replicate all the functions as well as the library calls and variable definitions. To display numbers (or the letters A~F) on the display, call the function

where a is the number to display, b is the base system used (2 for binary, 8 for octal, 10 for usual, and 16 for hexadecimal), and c is for padded zeros (0 =off, 1=on). If you look at the void loop() part of the example sketch, we use all four number systems in the demonstration. If your number is too large for the display, it will show OF for overflow. To control the decimal points, colon and the LED at the top-right the third digit, we can use the following:

After all that, here is the demonstration sketch for your perusal:

And a short video of the demonstration:

So there you have it – hopefully an easy to understand introduction to the world of the SPI bus and how to control the devices within. As always, now it is up to you and your imagination to find something to control or get up to other shenanigans. In the next SPI article we will look at reading and writing data via the SPI bus.

LEDborder

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS usng the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in AD5204, arduino, COM-09767, education, learning electronics, lesson, MCP4162, microcontrollers, SPI, tutorialComments (32)

Tutorial: Arduino and the DS touch screen

Use inexpensive touch-screens with Arduino in chapter twenty-three of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – A tutorial on the Arduino universe.  The first chapter is here, the complete series is detailed here.

[Updated 19/01/2013]

Today we are going to spend some time with a touch screen very similar to the ones found in a Nintendo DS gaming unit. In doing so, we can take advantage of a more interesting and somewhat futuristic way of gathering user input. Please note that in order to use the screen without going completely insane, you will need the matching breakout board, as shown in the following image:

screenbbss

The flimsy flexible PCB runner is inserted into the plastic socket on the breakout board – be careful not to crease the PCB nor damage it as it can be rather easy to do so. (The screen can be easy to break as well…) However don’t let that put you off. You will most likely want to solder in some header pins for breadboard use, or sockets to insert wires. For this article it is being used with pins for a breadboard.

Before we start to use the screen, let’s have a quick investigation into how they actually work. Instead of me trying to paraphrase something else, there is a very good explanation in the manufacturer’s data sheet. So please read the data sheet then return. Theoretically we can consider the X and Y axes to be two potentiometers (variable resistors) that can be read with the analogRead() function. So all we need to do is use two analog inputs, one to read the X-axis value and one for the Y-axis value.

However, as always, life isn’t that simple. Although there are only four wires to the screen, the wires’ purpose alters depending on whether we are measuring the X- or Y-axis. Which sounds complex but is not. Using the following example, we can see how it all works.

Example 23.1

In this example, we will read the X- and Y-axis values returned from the touch screen and display them on an LCD module. (Or you could easily send the values to the serial monitor window instead). From a hardware perspective, you will need:

  • Arduino Uno or 100% compatible board
  • DS touch screen and breakout board ready for use
  • Solderless breadboard and some jumper wires
  • Arduino-ready LCD setup. If you are unsure about using LCDs, please revisit chapter 24 of my tutorials.

Connection of the touch screen to the Arduino board is simple, Arduino analog (yes, analog – more on this later) pins A0 to Y1, A1 to X2, A2 to Y2 and A3 to X1 – as below:

exam23p1linkss

Mounting the rest for demonstration purposes is also a simple job. Hopefully by now you have a test LCD module for easy mounting 🙂

exam23p1ss

I have mounted  the touch screen onto the breadboard with some spare header pins, they hold it in nicely for testing purposes. Also notice that the touch screen has been flipped over, the sensitive side is now facing up. Furthermore, don’t forget to remove the protective plastic coating from the screen before use.

From a software (sketch) perspective we have to do three things – read the X-axis value, the Y-axis value, then display them on the LCD. As we (should) know from the data sheet, to read the X-axis value, we need to set X1 as 5V, X2 as 0V (that is, GND) and read the value from Y2. As described above, we use the analog pins to do this. (You can use analog pins as input/output lines in a similar method to digital pins – more information here. Pin numbering continues from 13, so analog 0 is considered to be pin 14, and so on). In our sketch (below) we have created a function to do this and then return the X-axis value.

The Y-axis reading is generated in the same method, and is quite self-explanatory. The delay in each function is necessary to allow time for the analog I/O pins to adjust to their new roles as inputs or outputs or analog to digital converters. Here is our sketch:

Next, let’s have a look at this example in action. The numbers on the LCD may be not what you expected…

The accuracy of the screen is not all that great – however first take into account the price of the hardware before being too critical. Note that there are values returned even when the screen is not being pressed, we could perhaps call these “idle values”. Later on you will learn tell your sketch to ignore these values if waiting for user input, as they will note that nothing has been pressed. Furthermore, the extremities of the screen will return odd values, so remember to take this into account when designing bezels or mounting hardware for your screen.

Each touch screen will have different values for each X and Y position, and that is why most consumer hardware with touch screens has calibration functions to improve accuracy. We can now use the X and Y values in sketches to determine which part of the screen is being touched, and act on that touch.

In order to program our sketches to understand which part of the screen is being touched, it will help to create a “map” of the possible values available. You can determine the values using the sketch from example 23.1, then use the returned values as a reference for designing the layout of your touch interface. For example, the following is a map of my touch screen:

rangess

Example 23.2

For the next example, I would like to have four “zones” on my touch screen, to use as virtual buttons for various things. The first thing to do is draw a numerical “map” of my touch screen, in order to know the minimum and maximum values for both axes for each zone on the screen:

zonallayoutss

At this point in the article I must admit to breaking the screen. Upon receiving the new one I remeasured the X and Y points for this example and followed the  process for defining the numerical boundaries for each zone is completed by finding average mid-points along the axes and allowing some tolerance for zone boundaries.

Now that the values are known, it is a simple matter of using mathematical comparison and Boolean operators (such as >, <, &&, etc)  in a sketch to determine which zone a touch falls into, and to act accordingly. So for this example, we will monitor the screen and display on the LCD screen which area has been pressed. The hardware is identical to example 23.1, and our touch screen map will be the one above. So now we just have to create the sketch.

After reading the values of the touch screen and storing them into variables x and y, a long if…then…else if loop occurs to determine the location of the touch. Upon determining the zone, the sketch calls a function to display the zone type on the LCD. Or if the screen is returning the idle values, the display is cleared. So have a look for yourself with the example sketch:

And see it in operation:

So there you have it, I hope you enjoyed reading this as much as I did writing it. Now you should have the ability to use a touch screen in many situations – you just need to decide how to work with the resulting values from the screen and go from there.

LEDborder

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, BOB-09170, education, hardware hacking, LCD-08977, lesson, microcontrollers, nintendo ds, touch screen, tutorialComments (14)


Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: