Tag Archive | "red"

Arduino and TM1640 LED Display Modules

Introduction

The purpose of this article is to demonstrate the use of the second (here’s the first) interesting LED display module I discovered on the dealextreme website, for example:

As you can see the display unit holds a total of sixteen seven-segment LED digits using four modules. However thanks to the use of the TM1640 controller IC

… the entire display is controlled with only four wires – 5V, GND, data in and clock:

Here is the data sheet for the TM1640. The board also ships with the 30cm long four-wire lead and fitted plug. Finally, there is a ‘power on’ LED on the right-hand end of the board:

Getting Started

Now to make things happen. From a hardware perspective – it couldn’t be easier. Connect the 5V and GND leads to … 5V and GND. The data and clock leads will connect to two Arduino digital pins. That’s it. The maximum current drawn by the display with all segments on is ~213mA:

So you should be able to drive this from a normal Arduino-compatible board without any hassle. Please note that the TM1640 IC does heat up somewhat, so you may want to consider some sort of heatsink if intending to max out the display in this manner.

From the software side of things you will need to download and install the TM1638 library (yes) which also handles the TM1640 chip. To simply display text from a string on the display, examine the following sketch:

Which will display:

The sixteen digit binary number in the module.setDisplayToString() line controls the decimal points – 0 for off and 1 for on. For example, changing it to

will display:

You can also display text in a somewhat readable form – using the characters available in this list. Displaying numbers is very easy, you can address each digit individually using:

where x is the digit, y is the position (0~15), and true/false is the decimal point. At this time you can’t just send a long integer down to the display, so you will need to either convert your numbers to a string or failing that, split it up into digits and display them one at a time.

In the following example sketch we display integers and unsigned integers by using the C command sprintf(). Note the use of %i to include an integer, and %u for unsigned integer:

And the resulting output:

Now you have an idea of what is possible, a variety of display options should spring to mind. For example:

Again, this display board was a random, successful find. When ordering from dealextreme, do so knowing that your order may take several weeks to arrive as they are not the fastest of online retailers; and your order may be coming from mainland China which can slow things down somewhat. Otherwise the module worked well and considering the minimal I/O and code requirements, is a very good deal.

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, lesson, part review, TM1638, TM1640, tutorialComments (10)

Arduino and TM1638 LED Display Modules

Introduction

The purpose of this article is to demonstrate the use of some interesting LED display modules I discovered on the dealextreme website, for example:

They contain eight 7-segment red LED digits, eight red/green LEDs and also eight buttons for user input. You can get red or green display models. The units can also be daisy-chained, allowing up to five at once, and a short cable is included with each module, as well as some short spacers and bolts, such as:

The spaces are just long enough to raise the PCB above a surface, however to mount the boards anywhere useful you would need longer ones. You may also want to remove the IDC sockets if you want to mount the module close to the surface of a panel. This would be a simple desoldering task as they are through-hole sockets:

The board is controlled by a TM1638 IC:

This part seems to be a domestic Chinese product from “Titan Micro Electronics“. After a quick search the TM1638 isn’t available from Digikey, Mouser or the element14 group… so if anyone has a lead on a low-volume, reliable supplier for these – please leave a comment below. However here is a link to the data sheet – thanks Marc!.

Getting Started

Now to make things happen…

Hardware – Connection to an Arduino-compatible board (or other MCU) is quite simple. The pinouts are shown on the rear of the PCB, and match the fitting on the ribbon cable. If you look at the end of the cable as such:

The top-right hole is pin one, with the top-left being pin two, the bottom-right pin nine and bottom-left pin ten. Therefore the pinouts are:

  1. Vcc (5V)
  2. GND
  3. CLK
  4. DIO
  5. STB1
  6. STB2
  7. STB3
  8. STB4
  9. STB5
  10. not connected

For Arduino use, pins 1~4 are the minimum necessary to use one module. Each additional module will require another digital pin connected to STB2, STB3, etc. More on this later. Please note that each module set to full brightness with every LED on consumes 127mA, so it would be wise to use external power with more than one module and other connections with Arduino boards. After spending some time with the module, I made a quick shield with an IDC header to make connection somewhat easier:

Software –  download and install the T1638 library from here. Thanks and kudos to rjbatista at gmail dot com for the library. Initialising modules in the sketch is simple. Include the library with:

then use one of the following for each module:

x is  the Arduino digital pin connected to the module cable pin 4, y is the Arduino digital pin connected to the module cable pin 3, and z is the strobe pin. So if you had one module with data, clock and strobe connected to pins 8, 7,  and 6 you would use:

If you had two modules, with module one’s strobe connected to Arduino digital 6, and module two’s strobe connected to digital 5, you would use:

and so on for more modules.  Now to control the display…

The bi-colour LEDs

Controlling the red/green LEDs is easy. For reference they are numbered zero to seven from left to right. To turn on or off a single LED, use the following:

Using the method above may be simple it is somewhat inefficient. A better way is to address all of the LEDs in one statement. To do this we send two bytes of data in hexadecimal to the display. The MSB (most significant byte) consists of eight bits, each representing one green LED being on (1) or off (0). The LSB (least significant byte) represents the red LEDs.

An easy way to determine the hexadecimal value to control the LEDs is simple, image you have one row of LEDs – the first eight being green and the second eight being red.  Set each digit to 1 for on and 0 for off. The convert the two binary numbers to hexadecimal and use this function:

Where green is the hexadecimal number for the green LEDs and red is the hexadecimal number for the red LEDs. For example, to turn on the first three LEDs as red, and the last three as green, the binary representation will be:

00000111 11100000 which in hexadecimal is E007. So we would use:

which produces the following:

The 7-segment display

To clear the numeric display (but not the LEDs below), simply use:

or to turn on every segment AND all the LEDs, use the following

To display decimal numbers, use the function:

where a is the integer, b is the position for the decimal point (0 for none, 1 for digit 8, 2, for digit 7, 4 for digit 6, 8 for digit 4, etc), and the last parameter (true/false) turns on or off leading zeros. The following sketch demonstrates the use of this function:

and the results:

One of the most interesting features is the ability to scroll text across one or more displays. To do so doesn’t really need an explanation as the included demonstration sketch:

included with the TM1638 library is easily followed. Just insert your text in the const char string[], ensure that the module(s) are wired according to the module definition at the start of the sketch and you’re set. To see the available characters, visit the function page. Note that the display is only seven-segments, so some characters may not look perfect, but in context will give you a good idea – for example:

Finally, you can also individually address each segment of each digit. Consider the contents of this array:

each element represents digits 1~8. The value of each element determines which segment of the digit turns on. For segments a~f, dp the values are 1,2,4,6,16,32,64,128. So the results of using the array above in the following function:

will be:

Naturally you can combine values for each digit to create your own characters, symbols, etcetera. For example, using the following values:

we created:

The buttons

The values of the buttons are returned as a byte value from the function:

As there are eight buttons, each one represents one bit of a binary number that is returned as a byte. The button on the left returns decimal one, and the right returns 128. It can also return simultaneous presses, so pressing buttons one and eight returns 129. Consider the following sketch, which returns the values of the button presses in decimal form, then displays the value:

and the results:

Update – 21/05/2012

A reader from Brazil has used one of the modules as part of a racing simulator – read more about it here, and view his demonstration below.

Update – 08/02/2013

Great tutorial on using these with a Raspberry Pi.

These display boards were a random, successful find. When ordering from dealextreme, do so knowing that your order may take several weeks to arrive as they are not the fastest of online retailers; and your order may be coming from mainland China which can slow things down somewhat. Otherwise the modules work well and considering the minimal I/O and code requirements, are a very good deal.

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, lesson, part review, raspberry pi, TM1638, tutorialComments (34)

Arduino meets Las Vegas with the Freetronics DMD

Updated 05/11/2014

Time once more to have some fun, and this time by examining the Freetronics DMD “Dot Matrix Display” available from Tronixlabs. We will look at the setup and operation of the display. In a nutshell the DMD comprises of a board measuring approximately 320mm across by 160mm which contains 16 rows of 32 high-intensity red LEDs. For example, in the off state:

Connection of the DMD to your Arduino-compatible board is quite simple. Included with each DMD is a 2×8 IDC cable of around 220mm in length, and a PCB to allow direct connection to the Arduino digital pins D6~13:

Finally the cable connects to the left-hand socket on the rear of the DMD:

You can also daisy-chain more than one display, so a matching output socket is also provided. Finally, an external power supply is recommended in order to drive the LEDs as maximum brightness – 5V at ~4 A per DMD. This is connected to a separate terminal on the rear of the board:

Do not connect these terminals to the 5V/GND of your Arduino board!

A power cable with lugs is also included so you can daisy chain the high-intensity power feeds as well. When using this method, ensure your power supply can deliver 5V at 4A  for each DMD used – so for two DMDs, you will need 8A, etc. For testing (and our demonstration) purposes you can simply connect the DMD to your Arduino via the IDC cable, however the LEDs will not light at their full potential.

Using the display with your Arduino sketches is quite simple. There is an enthusiastic group of people working on the library which you will need, and you can download it from and follow the progress at the DMD Github page and forks. Furthermore, there is always the Freetronics forum for help, advice and conversation. Finally you will also need the TimerOne library – available from here.

However for now let’s run through the use of the DMD and get things moving. Starting with scrolling text – download the demonstration sketch from here. All the code in the sketch outside of void loop() is necessary. Replace the text within the quotes with what you would like to scroll across the display, and enter the number of characters (including spaces) in the next parameter. Finally, if you have more than one display change the 1 to your number of displays in #define DISPLAYS_ACROSS 1.

Here is a quick video of our example sketch:

Now for some more static display functions – starting with clearing the display. You can use

to turn off all the pixels, or

to turn on all the pixels.

Note: turning on more pixels at once increases the current draw. Always keep this in mind and measure with an ammeter if unsure. 

Next some text. First you need to choose the font, at the time of writing there were two to choose from. Use

for a smaller font or

for a larger font. To position a single character on the DMD, use:

which will display the character ‘x’ at location x,y (in pixels – starting from zero). For example, using

results with:

Note if you have the pixels on ‘behind’ the character, the unused pixels in the character are not ‘transparent’. For example:

However if you change the last parameter to GRAPHICS_NOR, the unused pixels will become ‘transparent’. For example:

You can also use the parameter GRAPHICS_OR to overlay a character on the display. This is done with the blinking colon in the example sketch provided with the library.

Next, to draw a string (group of characters). This is simple, just select your font type and then use (for example):

Again, the 5 is a parameter for the length of the string to display. This results in the following:

Next up we look at the graphic commands. To control an individual pixel, use

And changing the 1 to a 0 turns off the pixel. To draw a circle with the centre at x,y and a radius r, use

To draw a line from x1, y2 to x2, y2, use:

To draw a rectangle from x1, y2 to x2, y, use:

And to draw a filled rectangle use:

Now let’s put those functions to work. You can download the demonstration sketch from here, and watch the following results:

Update – the DMD is also available in other colours, such as white:

So there you have it, an inexpensive and easy to use display board with all sorts of applications. Although the demonstrations contained within this article were rather simple, you now have the knowledge to apply your imagination to the DMD and display what you like. For more information, check out the entire DMD range at Tronixlabs. And if you enjoyed this article, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a fourth printing!) “Arduino Workshop”.

visit tronixlabs.com

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website.

Posted in arduino, dmd, freetronics, LED matrix, lesson, microcontrollers, product review, review, tronixlabs, tutorialComments (0)

Tutorial: Arduino and Infra-red control

Learn how to use Arduino and infra-red remote controls in chapter thirty-two of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – A tutorial on the Arduino universe. The first chapter is here, the complete series is detailed here.

Updated 10/07/2013

In this article we will look at something different to the usual, and hopefully very interesting and useful – interfacing our Arduino systems with infra-red receivers. Why would we want to do this? To have another method to control our Ardiuno-based systems, using simple infra-red remote controls.

A goal of this article is to make things as easy as possible, so we will not look into the base detail of how things work – instead we will examine how to get things done. If you would like a full explanation of infra-red, perhaps see the page on Wikipedia. The remote controls you use for televisions and so on transmit infra-red beam which is turned on and off at a very high speed – usually 38 kHz, to create bits of serial data which are then interpreted by the receiving unit. As the wavelength of infra-red light is too high for human eyes, we cannot see it. However using a digital camera – we can. Here is a demonstration video of IR codes being sent via a particularly fun kit – the adafruit TV-B-Gone:

Now to get started. You will need a remote control, and a matching IR receiver device. The hardware and library used in this tutorial only  supports NEC, Sony SIRC, Philips RC5, Philips RC6, and raw IR protocols. Or you can purchase a matching set for a good price, such as this example:

irpackage

Or you may already have a spare remote laying around somewhere. I kept this example from my old Sony Trinitron CRT TV after it passed away:

sonyremote1

It will more than suffice for a test remote. Now for a receiver – if you have purchased the remote/receiver set, you have a nice unit that is ready to be wired into your Arduino, and also a great remote that is compact and easy to carry about. To connect your receiver module – as per the PCB labels, connect Vcc to Arduino 5V, GND to Arduino GND, and D (the data line) to Arduino digital pin 11.

Our examples use pin 11, however you can alter that later on. If you are using your own remote control, you will just need a receiver module. These are very cheap, and an ideal unit is the Vishay TSOP4138 (data sheet .pdf). These are available from element-14 and the other usual retail suspects. They are also dead-simple to use. Looking at the following example:

From left to right the pins are data, GND and Vcc (to Arduino +5V). So it can be easily wired into a small breadboard for testing purposes. Once you have your remote and receiver module connected, you need to take care of the software side of things. There is a new library to download and install, download it from here. Please note that library doesn’t work for Arduino Leonardo, Freetronics Leostick, etc with ATmega32U4. Instead, use this library (and skip the modification steps below). Extract the IRremote folder and place into the ..\arduinoxxx\libraries folder. Then restart your Arduino IDE if it was already open.

Using Arduino IDE v1.0 or greater? Open the file “IRRemoteInt.h” in the library folder, and change the line

Then save and close the file, restart the Arduino IDE and you’re set.

With our first example, we will receive the commands from our remote control and display them on the serial monitor:

Open the serial monitor box, point your remote control to the receiver and start pressing away. You should see something like this:

What have we here? Lots of hexadecimal numbers. Did you notice that each button on your remote control resulted in an individual hexadecimal number? I hope so. The number FFFFFFFF means that the button was held down. The remote used was from a yum-cha discount TV. Now I will try again with the Sony remote:

This time, each button press resulted in the same code three times. This is peculiar to Sony IR systems. However nothing to worry about. Looking back at the sketch for example 32.1, the

section is critical – if a code has been received, the code within the if statement is executed. The hexadecimal code is stored in the variable

with which we can treat as any normal hexadecimal number. At this point, press a few buttons on your remote control, and take a note of the matching hexadecimal codes that relate to each button. We will need these codes for the next example…

Now we know how to convert the infra-red magic into numbers, we can create sketches to have our Arduino act on particular commands. As the IR library returns hexadecimal numbers, we can use simple decision functions to take action. In the following example, we use switch…case to examine each inbound code, then execute a function. In this case we have an LCD module connected via I2C, and the sketch is programmed to understand fifteen Sony IR codes. If you don’t have an LCD you could always send the output to the serial monitor. If you are using the DFRobot I2C LCD display, you need to use Arduino v23.

Furthermore you can substitute your own values if not using Sony remote controls. Finally, this sketch has a short loop after the translateIR(); function call which ignores the following two codes – we do this as Sony remotes send the same code three times. Again. you can remove this if necessary. Note that when using hexadecimal numbers in our sketch we preced them with 0x:

And here it is in action:


You might be thinking “why would I want to make things appear on the LCD like that?”. The purpose of the example is to show how to react to various IR commands. You can replace the LCD display functions with other functions of your choosing.

At the start working with infra-red may have seemed to be complex, but with the previous two examples it should be quite simple by now. So there you have it, another useful way to control our Arduino systems. Hopefully you have some ideas on how to make use of this technology. In future articles we will examine creating and sending IR codes from our Arduino. Furthermore, a big thanks to Ken Shirriff for his Arduino library.

LEDborder

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, control, DFR0107, dfrobot, education, infrared, IR, learning electronics, lesson, microcontrollers, remote, tronixstuff, tutorialComments (17)

Kit Review – Alan Parekh’s Infra-Red Jammer

[Updated 17/01/2013]

In this review we examine another kit which goes hand in hand with other mischievous items such as the TV-B-Gone – the Infra-Red Jammer kit by Alan Parekh of hackedgadgets.com. The function of this product is to create infra-red signals that are stronger than those from a normal remote control, thereby rendering it useless. Our jammer sends the signal out using four high-output infra-red LEDs, on the following frequencies: 30, 33, 36, 38, 40 and 56 kHz.

This is controlled by a small MCU that is included in preprogrammed form with the kit, so you don’t need to do it yourself. However, if you are building a jammer from scratch, Alan does allow the download of the hex file to program your own. However, please note that this kit is not an open-source hardware, so you cannot just start knocking out your own. But enough talking, let’s get building!

The kit is packaged in the typical minimalist fashion, the parts inside an anti-static bag:

bagss

Upon turfing out the contents, we find them to be:

contentsss

Unlike most other kit suppliers, I was very happy to see the IC socket included. It probably cost about 10 cents, but it can save someone a whole day of mucking about if they aren’t the best at soldering, and don’t have an electronics store nearby. Furthermore the PCB is solder-masked and silk screened nicely, and is of a decent thickness. Once again – if smaller companies can offer kits with such great PCBs, why cannot larger multi-million dollar outfits like Jaycar offer such great PCBs in their kits? Grrr. Anyway.

The assembly instructions have been compiled into a very neat and tidy book that is downloadable as a .pdf file. It is very clear and easy to follow, great for beginners or enthusiasts alike. So at this point it’s time to get soldering.

At first you need to decide upon the power output strength which is determined by R1 and R2 – for me, it’s all or nothing so I went for the high-power resistors. Thankfully values to use three output levels are included, so you will have some spare resistors at the end. Once those are in, the rest of the assembly is relatively straight forward:

pcbss

What did take me be surprise is the length of the leads on the two electrolytic capacitors – they were very short. This made mounting them difficult:

shortcapsss

However with a little perseverance they went in and stayed put. Although the jammer is activated for thirty seconds by pressing the button as seen in the photo above, there are also two pads on the PCB for another button… so you could, for example, mount the jammer under a lounge or inside an object, and have the button wired remotely. Very good idea:

extraswitchss

They are visible between the diode and the press button. Finally it was time to plug in a 9V battery and start jamming. Interestingly enough the PCB size matches the profile of a typical PP3 9V battery, so if you insulated the PCB with tape or another material, you could mount the PCB onto the battery:

9vsamess

As decided earlier, I chose the highest power output setting by using the low values for R1 and R2. At this point I was curious as to how much current the jammer will draw while operating – which turned out to be 209 mA:

209mass

So bear this in mind if you are going to spend the day jamming up things. You might want to carry a spare battery, or wire a couple up in parallel. But now it was time to get jamming and have some fun. The check of the infra-red LEDs was successful:

operatingss

A test at home showed it knocked out all the IR receivers on my sound and video gear from a distance of around 5 metres. I couldn’t try any further as a wall was in the way, but with the unit set to high power I’m sure it should be good for around fifteen metres at least.

Now when you press the button, the jamming will run for thirty seconds. However you can increase this by buffering up more presses – for example if you press the button three times the jammer will run for ninety seconds. If you were in a trade show, or somewhere you needed to create some mayhem, build a TV-B-Gone and one of these jammers. Turn off the screen then setup your jammer for a couple of minutes. You will drive the presenters positively nuts. Awesome!

Conclusion

This is another fun and inexpensive kit that can be used for hours on end in various situations. It was easy to solder apart from a couple of capacitors, and getting them in wasn’t really a problem once you held them in with some blu-tac. So if you’re looking for a gift for some trouble-makers, or just want to stop people changing the channel during the cricket, this kit is for you. It is available directly from Alan’s website here: http://alan-parekh.com/kits/ and is a steal for less than US$20 delivered.

In the meanwhile have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column? And join our friendly Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.
[Note – this kit was a promotional consideration made available by Alan Parekh]

Posted in infrared, jammer, kit review, product reviewComments (0)


Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: