Category Archives: LED

Tutorial – Arduino and Four Digit Seven Segment Display Module

This is a quick start guide for the Four Digit Seven Segment Display Module and Enclosure from PMD Way. This module offers a neat and bright display which is ideal for numeric or hexadecimal data. It can display the digits 0 to 9 including the decimal point, and the letters A to F. You can also control each segment individually if desired. 

Each module contains four 74HC595 shift registers – once of each controls a digit. If you carefully remove the back panel from the enclosure, you can see the pin connections:

four-digit-seven-segment-display-with-enclosure-from-pmdway

If you’re only using one display, use the group of pins at the centre-bottom of the board. From left to right the connections are:

  1. Data out (ignore for single display use)
  2. VCC – connect to a 3.3V or 5V supply
  3. GND – connect to your GND line
  4. SDI – data in – connect to the data out pin on your Arduino/other board
  5. LCK – latch – connect to the output pin on your Arduino or other board that will control the latch
  6. CLK – clock – connect to the output pin on your Arduino or other board that will control the clock signal

For the purposes of our Arduino tutorial, connect VCC to the 5V pin, GND to GND, SDI to D11, LCK to D13 and CLK to D12. 

If you are connecting more than one module, use the pins on the left- and right-hand side of the module. Start with the connections from your Arduino (etc) to the right-hand side, as this is where the DIN (data in) pin is located.

Then connect the pins on the left-hand side of the module to the right-hand side of the new module – and so forth. SDO (data out) will connect to the SDI (data in) – with the other pins being identical for connection. 

The module schematic is shown below:

four-digit-seven-segment-display-with-enclosure-from-pmdway

Arduino Example Sketch

Once you have made the connections to your Arduino as outlined above, upload the following sketch:

// Demonstration Arduino sketch for four digit, seven segment display with enclosure
// https://pmdway.com/collections/7-segment-numeric-leds/products/four-digit-seven-segment-display-module-and-enclosure
int latchPin = 13; // connect to LCK pin intclockPin = 12; // connect to CLK pin intdataPin = 11; // connect to SDI pin int LED_SEG_TAB[]={ 0xfc,0x60,0xda,0xf2,0x66,0xb6,0xbe,0xe0,0xfe,0xf6,0x01,0xee,0x3e,0x1a,0x7a,0x9e,0x8e,0x01,0x00}; //0 1 2 3 4 5 6 7 8 9 dp . a b c d e f off void setup() { //set pins to output so you can control the shift register pinMode(latchPin, OUTPUT); pinMode(clockPin, OUTPUT); pinMode(dataPin, OUTPUT); } void displayNumber(int value, boolean leadingZero) // break down "value" into digits and store in a,b,c,d { int a,b,c,d; a = value / 1000; value = value % 1000; b = value / 100; value = value % 100; c = value / 10; value = value % 10; d = value; if (leadingZero==false) // removing leading zeros { if (a==0 && b>0) { a = 18; } if (a==0 && b==0 && c>0) { a = 18; b = 18; } if (a==0 && b==0 && c==0) { a = 18; b = 18; c = 18; } if (a==0 && b==0 && c==0 && d==0) { a = 18; b = 18; c = 18; d = 18; } } digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[d]); shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[c]); shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[b]); shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[a]); digitalWrite(latchPin, HIGH); } void allOff() // turns off all segments { digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, LSBFIRST, 0); shiftOut(dataPin, clockPin, LSBFIRST, 0); shiftOut(dataPin, clockPin, LSBFIRST, 0); shiftOut(dataPin, clockPin, LSBFIRST, 0); digitalWrite(latchPin, HIGH); } void loop() { for (int z=900; z<=1100; z++) { displayNumber(z, false); delay(10); } delay(1000); for (int z=120; z>=0; --z) { displayNumber(z, true); delay(10); } delay(1000); digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[14]); shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[13]); shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[12]); shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[11]); digitalWrite(latchPin, HIGH); delay(1000); digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[16]); shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[15]); shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[14]); shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[13]); digitalWrite(latchPin, HIGH); delay(1000); digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[0]); shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[1]); shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[2]); shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[3]+1); digitalWrite(latchPin, HIGH); delay(1000); digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[7]); shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[6]+1); shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[5]); shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[4]); digitalWrite(latchPin, HIGH); delay(1000); }

After a moment you should see the display spring into action in the same way as in the demonstration video:

How does it work? 

First we define which digital output pins are used for latch, clock and data on lines four to six. On line eight we have created an array which contains values that are sent to the shift registers in the module to display the possible digits and letters. For example, the first – 0xfc – will activate the segments to display a zero, 0x7a for the letter C, and so on. 

From line 20 we’ve created a custom function that is used to send a whole number between zero and 9999 to the display. To do so, simply use:

void displayNumber(value, true/false);

where value is the number to display (or variable containing the number) – and the second parameter of true or false. This controls whether you have a leading zero displayed – true for yes, false for no. 

For example, to display “0123” you would use:

displayNumber(123, true);

… which results with:

four-digit-seven-segment-display-with-enclosure-from-pmdway-0123

or to display “500” you would use:

displayNumber(500, false);

… which results with:

four-digit-seven-segment-display-with-enclosure-from-pmdway-500

To turn off all the digits, you need to send zeros to every bit in the shift register, and this is accomplished with the function in the sketch called 

allOff();

What about the decimal point? 

To turn on the decimal point for a particular digit, add 1 to the value being sent to a particular digit. Using the code from the demonstration sketch to display 87.65 you would use:

 digitalWrite(latchPin, LOW);

 shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[5]);

 shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[6]);

 shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[7]+1); // added one for decimal point

 shiftOut(dataPin, clockPin, LSBFIRST, LED_SEG_TAB[8]);

 digitalWrite(latchPin, HIGH);

… which results with:

four-digit-seven-segment-display-with-enclosure-from-pmdway-87p65

In-depth explanation of how the module is controlled

As shown in the schematic above, each digit is controlled by a 74HC595 shift register. Each shift register has eight digital outputs, each of which control an individual segment of each digit. So by sending four bytes of data (one byte = eight bits) you can control each segment of the display. 

Each digit’s segments are mapped as follows:

7segmentdisplaymap

And the outputs from each shift register match the order of segments from left to right. So outputs 0~7 match A~G then decimal point. 

For example, to create the number seven with a decimal point, you need to turn on segments A, B, C and DP – which match to the shift register’s outputs 0,1,2,8. 

Thus the byte to send to the shift register would be 0b11100001 (or 225 in decimal or 0xE1 in hexadecimal). 

Every time you want to change the display you need to re-draw all four (or more if more than one module is connected) digits – so four bytes of data are sent for each display change. The digits are addressed from right to left, so the first byte send is for the last digit – and the last byte is for the first digit. 

There are three stages of updating the display. 

  1. Set the LCK (latch) line low
  2. Shift out four bytes of data from your microcontroller
  3. Set the LCK (latch) line high

For example, using Arduino code we use:

  digitalWrite(latchPin, LOW);

  shiftOut(dataPin, clockPin, LSBFIRST, 0b10000000); // digit 4

  shiftOut(dataPin, clockPin, LSBFIRST, 0b01000000); // digit 3

  shiftOut(dataPin, clockPin, LSBFIRST, 0b00100000); // digit 2

  shiftOut(dataPin, clockPin, LSBFIRST, 0b00010001); // digit 1

  digitalWrite(latchPin, HIGH);

This would result with the following:

4digit7segmentdisplaymoduletronixlabsbits

Note how the bytes in binary match the map of the digits and their position. For example, the first byte sent was for the fourth digit, and the segment A was turned on. And that’s all there is to it – a neat and simple display. 

This post brought to you by pmdway.com – everything for makers and electronics enthusiasts, with free delivery worldwide.

To keep up to date with new posts at tronixstuff.com, please subscribe to the mailing list in the box on the right, or follow us on twitter @tronixstuff.

 

Tutorial – Arduino and the TLC5940 PWM LED Driver IC

In this article we are going to examine the Texas Instruments TLC5940 16-channel LED driver IC. Our reason for doing this is to demonstrate another, easier way of driving many LEDs – and also servos.  First up, here is a few examples of the TLC5940:

TLC5940 LED driver IC from PMD Way

The TLC5940 is available in the DIP version above, and also surface-mount. It really is a convenient part, allowing you to adjust the brightness of sixteen individual LEDs via PWM (pulse-width modulation) – and you can also daisy-chain more than one TLC5940 to control even more.

During this tutorial we’ll explain how to control one or more TLC5940 ICs with LEDs and also look at controlling servos. At this point, please download a copy of the TLC5940_data_sheet (.pdf) as you will refer to it through this process. Furthermore, please download and install the TLC5940 Arduino library by Alex Leone which can be found here. If you’re not sure how to install a library, click here.

Build a TLC5940 demonstration circuit

The following circuit is the minimum required to control sixteen LEDs from your Arduino or compatible. You can use it to experiment with various functions and get an idea of what is possible. You will need:

Take note of the LED orientation – and remember the TLC5940 is a common-anode LED driver – so all the LED anodes are connected together and then to 5V:

TLC5940 LED driver IC from PMD Way

For this particular circuit, you won’t need an external 5V power supply – however you may need one in the future. The purpose of the resistor is to control the amount of current that can flow through the LEDs. The required resistor value is calculated with the following formula:

R = 39.06 / Imax

where R (in Ohms)  is the resistor value and Imax (in Amps) is the maximum amount of current you want to flow through the LEDs. For example, if you have LEDs with a 20 mA forward current – the resistor calculation would be:

R = 39.06 / 0.02 = 1803 Ohms.

Once you have the circuit assembled – open up the Arduino IDE and upload the sketch BasicUse.pde  which is in the example folder for the TLC5940 library. You should be presented with output similar to what is shown in the following video:

Controlling the TLC5940

Now that the circuit works, how do we control the TLC5940? First, the mandatory functions – include the library at the start of the sketch with:

#include "Tlc5940.h"

and then initialise the library by placing the following into void setup():

Tlc.init(x);

x is an optional parameter – if you want to set all the channels to a certain brightness as soon as the sketch starts, you can insert a value between 0 and 4095 for in the Tlc.init() function.

Now to turn a channel/LED on or off. Each channel is numbered from 0 to 15, and each channel’s brightness can be adjusted between 0 and 4095.

This is a two-part process…

First – use one or more of the following functions to set up the required channels and respective brightness (PWM level):

Tlc.set(channel, brightness);

For example, if you wanted to have the first three channels on at full brightness, use:

Tlc.set(0, 4095);
Tlc.set(1, 4095);
Tlc.set(2, 4095);

The second part is to use the following to update the TLC5940 with the required instructions from part one:

Tlc.update();

If you want to turn off all channels at once, simply use:

Tlc.clear();

You don’t need to call a TLC.update() after the clear function. The following is a quick example sketch that sets the brightness/PWM values of all the channels to different levels:

#include "Tlc5940.h"
void setup()
{
  Tlc.init(0); // initialise TLC5940 and set all channels off
}

void loop()
{
  for (int i = 0; i < 16; i++)
  {
    Tlc.set(i, 1023);
  }
  Tlc.update();
  delay(1000);
  for (int i = 0; i < 16; i++)
  {
    Tlc.set(i, 2046);
  }
  Tlc.update();
  delay(1000);
  for (int i = 0; i < 16; i++)
  {
    Tlc.set(i, 3069);
  }
  Tlc.update();
  delay(1000);
  for (int i = 0; i < 16; i++)
  {
    Tlc.set(i, 4095);
  }
  Tlc.update();
  delay(1000);
}

and the sketch in action:

The ability to control individual brightness for each channel/LED can also be useful when controlling RGB LEDs – you can then easily select required colours via different brightness levels for each element.

Using two or more TLC5940s

You can daisy-chain quite a few TLC5940s together to control more LEDs. First – wire up the next TLC5940 to the Arduino as shown in the demonstration circuit – except connect the SOUT pin (17) of the first TLC5940 to the SIN pin (26) of the second TLC5940 – as the data travels from the Arduino, through the first TLC5940 to the second and so on. Then repeat the process if you have a third, etc. Don’t forget the resisotr that sets the current!

Next, open the file tlc_config.h located in the TLC5940 library folder. Change the value of NUM_TLCS to the number of TLC5940s you have connected together, then save the file and also delete the file Tlc5940.o also located in the same folder. Finally restart the IDE. You can then refer to the channels of the second and further TLC5940 sequentially from the first. That is, the first is 0~15, the second is 16~29, and so on.

Controlling servos with the TLC5940

As the TLC5940 generates PWM (pulse-width modulation) output, it’s great for driving servos as well. Just like LEDs – you can control up to sixteen at once. Ideal for creating spider-like robots, strange clocks or making some noise. When choosing your servo, ensure that it doesn’t draw more than 120 mA when operating (the maximum current per channel) and also heed the “Managing current and heat” section at the end of this tutorial. And use external power with servos, don’t rely on the Arduino’s 5V line.

To connect a servo is simple – the GND line connects to GND, the 5V (or supply voltage lead) connects to your 5v (or other suitable supply) and the servo control pin connects to one of the TLC5940’s outputs. Finally – and this is important – connect a 2.2kΩ resistor between the TLC5940 output pin(s) being used and 5V.

Controlling a servo isn’t that different to an LED. You need the first two lines at the start of the sketch:

#include "Tlc5940.h"
#include "tlc_servos.h"

then the following in void setup():

tlc_initServos();

Next, use the following function to select which servo (channel) to operate and the required angle (angle):

tlc_setServo(channel, angle);

Just like the LEDs you can bunch a few of these together, and then execute the command with:

Tlc.update();

So let’s see all that in action. The following example sketch sweeps four servos across 90 degrees:

#include "Tlc5940.h"
#include "tlc_servos.h"

void setup()
{
  tlc_initServos();  // Note: this will drop the PWM freqency down to 50Hz.
}

void loop()
{
  for (int angle = 0; angle < 90; angle++) {
    tlc_setServo(0, angle);
    tlc_setServo(1, angle);
    tlc_setServo(2, angle);
    tlc_setServo(3, angle);    
    Tlc.update();
    delay(5);
  }
  for (int angle = 90; angle >= 0; angle--) {
    tlc_setServo(0, angle);
    tlc_setServo(1, angle);
    tlc_setServo(2, angle);
    tlc_setServo(3, angle);    
    Tlc.update();
    delay(5);
  }
}

And the following video captures those four servos in action:

If you servos are not rotating to the correct angle – for example you ask for 180 degrees and they only rotate to 90 or thereabouts, a little extra work is required. You need to open the tlc_servos.h file located in the TLC5940 Arduino library folder and experiment with the values for SERVO_MIN_WIDTH and SERVO_MAX_WIDTH. For example change SERVO_MIN_WIDTH from 200 to 203 and SERVO_MAX_WIDTH from 400 to 560.

Managing current and heat 

As mentioned earlier, the TLC5940 can handle a maximum of 120 mA per channel. After some experimenting you may notice that the TLC5940 does get warm – and that’s ok. However there is a maximum limit to the amount of power that can be dissipated before destroying the part. If you are just using normal garden-variety LEDs or smaller servos, power won’t be a problem. However if you’re planning on using the TLC5940 to the max – please review the notes provided by the library authors.

Conclusion

Once again you’re on your way to controlling an incredibly useful part with your Arduino. Now with some imagination you can create all sorts of visual displays or have fun with many servos.

This post is brought to you by pmdway.com – everything for makers and electronics enthusiasts, with free delivery worldwide.

To keep up to date with new posts at tronixstuff.com, please subscribe to the mailing list in the box on the right, or follow us on twitter @tronixstuff.

Tutorial – LM3914 Dot/Bar Display Driver IC

This is the first of three tutorials that will examine the LM391x series of LED driver ICs. In this first tutorial we cover the LM3914, then the LM3915 and LM3916 will follow. The goal of these tutorials is to have you using the parts in a small amount of time and experiment with your driver ICs, from which point you can research further into their theory and application.

Although these parts have been around for many years, the LM3914 in particular is still quite popular. It offers a simple way to display a linear voltage level using one or more groups of ten LEDs with a minimum of fuss.

You can order LM3914s in various pack sizes from PMD Way with free delivery, worldwide

With a variety of external parts or circuitry these LEDs can then represent all sorts of data, or just blink for your amusement. We’ll run through a few example circuits that you can use in your own projects and hopefully give you some ideas for the future. Originally by National Semiconductor, the LM391X series is now handled by Texas Instruments.

LM3914 from PMD Way

Getting Started

You will need the LM3914 data sheet, so please download that and keep it as a reference. So – back to basics. The LM3914 controls ten LEDs. It controls the current through the LEDs with the use of only one resistor, and the LEDs can appear in a bar graph or single ‘dot’ when in use. The LM3914 contains a ten-stage voltage divider, each stage when reached will illuminate the matching LED (and those below it in level meter mode).

Let’s consider the most basic of examples (from page two of the data sheet) – a voltmeter with a range of 0~5V.

The Vled rail is also connected to the supply voltage in our example. Pin 9 controls the bar/dot display mode – with it connected to pin 3 the LEDs will operate in bar graph mode, leave it open for dot mode.

The 2.2uF capacitor is required only when “leads to the LED supply are 6″ or longer”. We’ve hooked up the circuit above, and created a 0~5V DC source via a 10kΩ potentiometer with a multimeter to show the voltage – in the following video you can see the results of this circuit in action, in both dot and bar graph mode:

Customising the upper range and LED current

Well that was exciting, however what if you want a different reference voltage? That is you want your display to have a range of 0~3 V DC? And how do you control the current flow through each LED? With maths and resistors. Consider the following formulae:

LM3914 from PMD Way

As you can see the LED current (Iled) is simple, our example is 12.5/1210 which returned 10.3 mA – and in real life 12.7 mA (resistor tolerance is going to affect the value of the calculations).

Now to calculate a new Ref Out voltage – for example  we’ll shoot for a 3 V meter, and keep the same current for the LEDs. This requires solving for R2 in the equation above, which results with R2 = -R1 + 0.8R1V. Substituting the values – R2 = -1210 + 0.8 x 1210 x 3 gives a value of 1694Ω for R2. Not everyone will have the E48 resistor range, so try and get something as close as possible. We found a 1.8 kΩ for R2 and show the results in the following video:

You can of course have larger display range values, but a supply voltage of no more than 25 V will need to be equal to or greater than that value. E.g. if you want a 0~10 V display, the supply voltage must be >= 10V DC.

Creating custom ranges

Now we’ll look at how to create  a lower range limit, so you can have displays that (for example) can range from a non-zero positive value. For example, you want to display levels between 3 and 5V DC. From the previous section, you know how to set the upper limit, and setting the lower limit is simple – just apply the lower voltage to pin 4 (Rlo).

You can derive this using a resistor divider or other form of supply with a common GND. When creating such circuits, remember that the tolerance of the resistors used in the voltage dividers will have an affect on the accuracy. Some may wish to fit trimpots, which after alignment can be set permanently with a blob of glue.

Finally, for more reading on this topic – download and review the TI application note.

Chaining multiple LM3914s

Two or more LM3914s can be chained together to increase the number of LEDs used to display the levels over an expanded range. The circuitry is similar to using two independent units, except the REFout (pin 7) from the first LM3914 is fed to the REFlo (pin 4) of the second LM3914 – whose REFout is set as required for the upper range limit. Consider the following example schematic which gave a real-world range of 0~3.8V DC:

LM3914 from PMD Way

The 20~22kΩ resistor is required if you’re using dot mode (see “Dot mode carry” in page ten of the data sheet). Moving on, the circuit above results with the following:

Where to from here?

Now you can visually represent all sorts of low voltages for many purposes. There’s more example circuits and notes in the LM3914 data sheet, so have a read through and delve deeper into the operation of the LM3914.

Furthermore Dave Jones from eevblog.com has made a great video whcih describes a practical application of the LM3914:

Conclusion

As always we hope you found this useful. Don’t forget to stay tuned for the second and third instalments using the LM3915 and LM3916.

This post is brought to you by pmdway.com – everything for makers and electronics enthusiasts, with free delivery worldwide.

To keep up to date with new posts at tronixstuff.com, please subscribe to the mailing list in the box on the right, or follow us on twitter @tronixstuff.

Tutorial – Arduino and MC14489 LED Display Driver

As an increasing number of people enjoy experimenting with retro-hardware and electronics – especially stuff with numerical LED displays – they have discovered the classic MC14489 LED display driver.

The MC14489 (originally from Motorola) can drive five seven-segment LED numbers with decimal point, or a combination of numbers and separate LEDs. You can also daisy-chain more than one to drive more digits, and it’s controlled with a simple serial data-clock method in the same way as a 74HC595 shift register.

Although it’s an older part, sourcing the MC14489 isn’t too difficult – you can order them from PMD Way in a blink.

For the purpose of the tutorial we’ll show you how to send commands easily from your Arduino or compatible board to control a five-digit 7-segment LED display module – and the instructions are quite simple so they should translate easily to other platforms. Once you have mastered the single module, using more than one MC14489 will be just as easy. So let’s get started.

Hardware

Before moving forward, download the data sheet (pdf). You will need to refer to this as you build the circuit(s). And here’s our subject in real life:

MC14489 LED Display Driver from PMD Way

For our demonstration display we’ll be using a vintage HP 5082-7415 LED display module. However you can use almost any 7-segment modules as long as they’re common-cathode. If you’re using a four-digit module and want an extra digit, you can add another single digit display.

If you want a ruler, the design files are here.

Connecting the MC14489 to an LED display isn’t complex at all. From the data sheet consider Figure 9:

MC14489 LED Display Driver from PMD Way

Each of the anode control pins from the MC14489 connect to the matching anodes on your display module, and the BANK1~5 pins connect to the matching digit cathode pins on the display module. You can find the MC14489 pin assignments on page 1 of the data sheet. Seeing as this is chapter fifty-one  – by now you should be confident with finding such information on the data sheets, so I will be encouraging you to do a little more of the work.

Interesting point – you don’t need current-limiting resistors. However you do need the resistor Rx – this controls the current flow to each LED segment. But which value to use? You need to find out the forward current of your LED display (for example 20 mA) then check Figure 7 on page 7 of the data sheet:

MC14489 LED Display Driver from PMD Way

To be conservative I’m using a value of 2k0 for Rx, however you can choose your own based on the data sheet for your display and the graph above.  Next – connect the data, clock and enable pins of the MC14489 to three Arduino digital pints – for our example we’re using 5, 6 and 7 for data, clock and enable respectively.

Then it’s just 5V and GND to Arduino 5V and GND – and put a 0.1uF capacitor between 5V and GND. Before moving on double-check the connections – especially between the MC14489 and the LED display.

Controlling the MC14489

To control the display we need to send data to two registers in the MC14489 – the configuration register  (one byte) and the display register (three bytes). See page 9 of the data sheet for the overview.

The MC14489 will understand that if we send out one byte of data it is to send it the configuration register, and if it receives three bytes of data to send it to the display register. To keep things simple we’ll only worry about the first bit (C0) in the configuration register – this turns the display outputs on or off. To do this, use the following:

digitalWrite(enable, LOW);
shiftOut(data, clock, MSBFIRST, B00000001); // used binary for clarity, however you can use decimal or hexadecimal numbers
digitalWrite(enable, HIGH);
delay(10);

and to turn it off, send bit C0 as zero. The small delay is necessary after each command.

Once you have turned the display on – the next step is to send three bytes of data which represent the numbers to display and decimal points if necessary. Review the table on page 8 of the data sheet. See how they have the binary nibble values for the digits in the third column.

Thankfully the nibble for each digit is the binary value for that digit. Furthermore you might want to set the decimal point – that is set using three bits in the first nibble of the three bytes (go back to page 9 and see the display register). Finally you can halve the brightness by setting the very first bit to zero (or one for full brightness).

As an example for that – if you want to display 5.4321 the three bytes of data to send in binary will be:

1101 0101 0100 0011 0010 0001

Let’s break that down. The first bit is 1 for full brightness, then the next three bits (101) turn on the decimal point for BANK5 (the left-most digit). Then you have five nibbles of data, one for each of the digits from left to right. So there’s binary for 5, then four, then three, then two, then one.

digitalWrite(enable, LOW); 
shiftOut(data, clock, MSBFIRST, B11010101); // D23~D16 
shiftOut(data, clock, MSBFIRST, B01000011); // D15~D8
shiftOut(data, clock, MSBFIRST, B00100001); // D7~D0
digitalWrite(enable, HIGH);
delay(10);

To demonstrate everything described so far, it’s been neatly packaged into our first example sketch:

// Example 51.1
// Motorola MC14489 with HP 5082-7415 5-digit, 7-segment LED display
// 2k0 resistor on MC14489 Rx pin
// John Boxall 2013 CC by-sa-nc
// define pins for data from Arduino to MC14489
// we treat it just like a 74HC595
int data = 5;
int clock = 6;
int enable = 7;
void setup()
{
 pinMode(data, OUTPUT);
 pinMode(enable, OUTPUT);
 pinMode(clock, OUTPUT);
 displayOn(); // display defaults to off at power-up
}
void displayTest1()
// displays 5.4321
{
 digitalWrite(enable, LOW); // send 3 bytes to display register. See data sheet page 9
 // you can also insert decimal or hexadecimal numbers in place of the binary numbers
 // we're using binary as you can easily match the nibbles (4-bits) against the table
 // in data sheet page 8
 shiftOut(data, clock, MSBFIRST, B11010101); // D23~D16
 shiftOut(data, clock, MSBFIRST, B01000011); // D15~D8
 shiftOut(data, clock, MSBFIRST, B00100001); // D7~D0
 digitalWrite(enable, HIGH);
 delay(10);
}
void displayTest2()
// displays ABCDE
{
 digitalWrite(enable, LOW); // send 3 bytes to display register. See data sheet page 9
 // you can also insert decimal or hexadecimal numbers in place of the binary numbers
 // we're using binary as you can easily match the nibbles (4-bits) against the table
 // in data sheet page 8
 shiftOut(data, clock, MSBFIRST, B10001010); // D23~D16
 shiftOut(data, clock, MSBFIRST, B10111100); // D15~D8
 shiftOut(data, clock, MSBFIRST, B11011110); // D7~D0
 digitalWrite(enable, HIGH);
 delay(10);
}
void displayOn()
// turns on display
{
 digitalWrite(enable, LOW);
 shiftOut(data, clock, MSBFIRST, B00000001);
 digitalWrite(enable, HIGH);
 delay(10);
}
void displayOff()
// turns off display
{
 digitalWrite(enable, LOW);
 shiftOut(data, clock, MSBFIRST, B00000000);
 digitalWrite(enable, HIGH);
 delay(10);
}
void loop()
{
 displayOn();
 displayTest1();
 delay(1000);
 displayTest2();
 delay(1000);
 displayOff();
 delay(500);
}

… with the results in the following video:

Now that we can display numbers and a few letters with binary, life would be easier if there was a way to take a number and just send it to the display.

So consider the following function that takes an integer between 0 and 99999, does the work and sends it to the display:

void displayIntLong(long x)
// takes a long between 0~99999 and sends it to the MC14489
{
 int numbers[5];
 byte a=0; 
 byte b=0; 
 byte c=0; // will hold the three bytes to send to the MC14489 

 // first split the incoming long into five separate digits
 numbers[0] = int ( x / 10000 ); // left-most digit (will be BANK5)
 x = x % 10000; 
 numbers[1] = int ( x / 1000 );
 x = x % 1000; 
 numbers[2] = int ( x / 100 );
 x = x % 100; 
 numbers[3] = int ( x / 10 );
 x = x % 10; 
 numbers[4] = x % 10; // right-most digit (will be BANK1)

 // now to create the three bytes to send to the MC14489
 // build byte c which holds digits 4 and 5
 c = numbers[3];
 c = c << 4; // move the nibble to the left
 c = c | numbers[4];
 // build byte b which holds digits 3 and 4
 b = numbers [1];
 b = b << 4;
 b = b | numbers[2];
 // build byte a which holds the brightness bit, decimal points and digit 1
 a = B10000000 | numbers[0]; // full brightness, no decimal points

 // now send the bytes to the MC14489
 digitalWrite(enable, LOW);
 shiftOut(data, clock, MSBFIRST, a);
 shiftOut(data, clock, MSBFIRST, b);
 shiftOut(data, clock, MSBFIRST, c); 
 digitalWrite(enable, HIGH);
 delay(10); 
}

So how does that work? First it splits the 5-digit number into separate digits and stores them in the array numbers[]. It then places the fourth digit into a byte, then moves the data four bits to the left – then we bitwise OR the fifth digit into the same byte. This leaves us with a byte of data containing the nibbles for the fourth and fifth digit.

The process is repeated for digits 2 and 3. Finally the brightness bit and decimal point bits are assigned to another byte which then has the first digit’s nibble OR’d into it. Which leaves us with bytes a, b and c ready to send to the MC14489.

Note that there isn’t any error-checking – however you could add a test to check that the number to be displayed was within the parameter, and if not either switch off the display (see example 51.1) or throw up all the decimal points or … whatever you want.

Here’s our final demonstration sketch (example 51.2)

// Example 51.2
// Motorola MC14489 with HP 5082-7415 5-digit, 7-segment LED display
// 2k0 resistor on MC14489 Rx pin
// John Boxall 2013 CC by-sa-nc

// define pins for data from Arduino to MC14489
// we treat it just like a 74HC595
int data = 5;
int clock = 6;
int enable = 7;
long i;
void setup()
{
randomSeed(analogRead(0));
pinMode(data, OUTPUT);
pinMode(enable, OUTPUT);
pinMode(clock, OUTPUT);
displayOn(); // display defaults to off at power-up
}

void displayOn()
// turns on display
{
digitalWrite(enable, LOW);
shiftOut(data, clock, MSBFIRST, B00000001);
digitalWrite(enable, HIGH);
delay(10);
}

void displayOff()
// turns off display
{
digitalWrite(enable, LOW);
shiftOut(data, clock, MSBFIRST, B00000000);
digitalWrite(enable, HIGH);
delay(10);
}

void displayIntLong(long x)
// takes a long between 0~99999 and sends it to the MC14489
{
int numbers[5];
byte a=0;
byte b=0;
byte c=0; // will hold the three bytes to send to the MC14489

// first split the incoming long into five seperate digits
numbers[0] = int ( x / 10000 ); // left-most digit (will be BANK5)
x = x % 10000;
numbers[1] = int ( x / 1000 );
x = x % 1000;
numbers[2] = int ( x / 100 );
x = x % 100;
numbers[3] = int ( x / 10 );
x = x % 10;
numbers[4] = x % 10; // right-most digit (will be BANK1)

// now to create the three bytes to send to the MC14489
// build byte a which holds the brightness bit, decimal points and digit 1
a = B10000000 | numbers[0]; // full brightness, no decimal points
// build byte b which holds digits 3 and 4
b = numbers [1];
b = b << 4;
b = b | numbers[2];
// build byte c which holds digits 4 and 5
c = numbers[3];
c = c << 4; // move the nibble to the left
c = c | numbers[4];

// now send the bytes to the MC14489
digitalWrite(enable, LOW);
shiftOut(data, clock, MSBFIRST, a);
shiftOut(data, clock, MSBFIRST, b);
shiftOut(data, clock, MSBFIRST, c);
digitalWrite(enable, HIGH);
delay(10);
}

void loop()
{
i = random(0,100000);
displayIntLong(i);
delay(200);
}

…which results in the following video:

You can also display the letters A to F by sending the values 10 to 15 respectivel to each digit’s nibble. However that would be part of a larger application, which you can (hopefully) by now work out for yourself. Furthermore there’s some other characters that can be displayed – however trying to display the alphabet using 7-segment displays is somewhat passé. Instead, get some 16-segment LED modules or an LCD.

Finally, you can cascade more than one MC14489 to control more digits. Just run a connection from the data out pin on the first MC14889 to the data pin of the second one, and all the clock and enable lines together. Then send out more data – see page 11 of the data sheet. If you’re going to do that in volume other ICs may be a cheaper option and thus lead you back to the MAX7219.

Conclusion 

For a chance find the MC14489 is a fun an inexpensive way to drive those LED digit displays. We haven’t covered every single possible option or feature of the part – however you will now have the core knowledge to go further with the MC14489 if you need to move further with it.

This post brought to you by pmdway.com – everything for makers and electronics enthusiasts, with free delivery worldwide.

To keep up to date with new posts at tronixstuff.com, please subscribe to the mailing list in the box on the right, or follow us on twitter @tronixstuff.