Tag Archive | "micro"

Tutorial – Arduino and the MAX7219 LED Display Driver IC

Use the Maxim MAX7219 LED display driver with Arduino in Chapter 56 of our Arduino Tutorials. The first chapter is here, the complete series is detailed here.

Introduction

Sooner or later Arduino enthusiasts and beginners alike will come across the MAX7219 IC. And for good reason, it’s a simple and somewhat inexpensive method of controlling 64 LEDs in either matrix or numeric display form. Furthermore they can be chained together to control two or more units for even more LEDs. Overall – they’re a lot of fun and can also be quite useful, so let’s get started.

Here’s an example of a MAX7219 and another IC which is a functional equivalent, the AS1107 from Austria Microsystems. You might not see the AS1107 around much, but it can be cheaper – so don’t be afraid to use that instead:

MAX7219 AS1107

 At first glance you may think that it takes a lot of real estate, but it saves some as well. As mentioned earlier, the MAX7219 can completely control 64 individual LEDs – including maintaining equal brightness, and allowing you to adjust the brightness of the LEDs either with hardware or software (or both). It can refresh the LEDs at around 800 Hz, so no more flickering, uneven LED displays.

You can even switch the display off for power saving mode, and still send it data while it is off. And another good thing – when powered up, it keeps the LEDs off, so no wacky displays for the first seconds of operation. For more technical information, here is the data sheet: MAX7219.pdf. Now to put it to work for us – we’ll demonstrate using one or more 8 x 8 LED matrix displays, as well as 8 digits of 7-segment LED numbers.

Before continuing, download and install the LedControl Arduino library as it is essential for using the MAX7219.

Controlling LED matrix displays with the MAX7219

First of all, let’s examine the hardware side of things. Here is the pinout diagram for the MAX7219:

MAX7219 pinout

The MAX7219 drives eight LEDs at a time, and by rapidly switching banks of eight your eyes don’t see the changes. Wiring up a matrix is very simple – if you have a common matrix with the following schematic:

LED matrix pinoutsconnect the MAX7219 pins labelled DP, A~F to the row pins respectively, and the MAX7219 pins labelled DIG0~7 to the column pins respectively. A total example circuit with the above matrix  is as follows:

MAX7219 example LED matrix circuit

The circuit is quite straight forward, except we have a resistor between 5V and MAX7219 pin 18. The MAX7219 is a constant-current LED driver, and the value of the resistor is used to set the current flow to the LEDs. Have a look at table eleven on page eleven of the data sheet:

MAX7219 resistor tableYou’ll need to know the voltage and forward current for your LED matrix or numeric display, then match the value on the table. E.g. if you have a 2V 20 mA LED, your resistor value will be 28kΩ (the values are in kΩ). Finally, the MAX7219 serial in, load and clock pins will go to Arduino digital pins which are specified in the sketch. We’ll get to that in the moment, but before that let’s return to the matrix modules.

In the last few months there has been a proliferation of inexpensive kits that contain a MAX7219 or equivalent, and an LED matrix. These are great for experimenting with and can save you a lot of work – some examples of which are shown below:

MAX7219 LED matrix modules

At the top is an example from tronixlabs.com, and the pair on the bottom are the units from a recent kit review. We’ll use these for our demonstrations as well.

Now for the sketch. You need the following two lines at the beginning of the sketch:

The first pulls in the library, and the second line sets up an instance to control. The four parameters are as follows:

  1. the digital pin connected to pin 1 of the MAX7219 (“data in”)
  2. the digital pin connected to pin 13 of the MAX7219 (“CLK or clock”)
  3. the digital pin connected to pin 12 of the MAX7219 (“LOAD”)
  4. The number of MAX7219s connected.

If you have more than one MAX7219, connect the DOUT (“data out”) pin of the first MAX7219 to pin 1 of the second, and so on. However the CLK and LOAD pins are all connected in parallel and then back to the Arduino.

Next, two more vital functions that you’d normally put in void setup():

The first line above turns the LEDs connected to the MAX7219 on. If you set TRUE, you can send data to the MAX7219 but the LEDs will stay off. The second line adjusts the brightness of the LEDs in sixteen stages. For both of those functions (and all others from the LedControl) the first parameter is the number of the MAX7219 connected. If you have one, the parameter is zero… for two MAX7219s, it’s 1 and so on.

Finally, to turn an individual LED in the matrix on or off, use:

which turns on an LED positioned at col, row connected to MAX7219 #1. Change TRUE to FALSE to turn it off. These functions are demonstrated in the following sketch:

And a quick video of the results:

How about controlling two MAX7219s? Or more? The hardware modifications are easy – connect the serial data out pin from your first MAX7219 to the data in pin on the second (and so on), and the LOAD and CLOCK pins from the first MAX7219 connect to the second (and so on). You will of course still need the 5V, GND, resistor, capacitors etc. for the second and subsequent MAX7219.

You will also need to make a few changes in your sketch. The first is to tell it how many MAX7219s you’re using in the following line:

by replacing X with the quantity. Then whenever you’re using  a MAX7219 function, replace the (previously used) zero with the number of the MAX7219 you wish to address. They are numbered from zero upwards, with the MAX7219 directly connected to the Arduino as unit zero, then one etc. To demonstrate this, we replicate the previous example but with two MAX7219s:

And again, a quick demonstration:

Another fun use of the MAX7219 and LED matrices is to display scrolling text. For the case of simplicity we’ll use the LedControl library and the two LED matrix modules from the previous examples.

First our example sketch – it is quite long however most of this is due to defining the characters for each letter of the alphabet and so on. We’ll explain it at the other end!

The pertinent parts are at the top of the sketch – the following line sets the number of MAX7219s in the hardware:

The following can be adjusted to change the speed of text scrolling:

… then place the text to scroll in the following (for example):

Finally – to scroll the text on demand, use the following:

You can then incorporate the code into your own sketches. And a video of the example sketch in action:

Although we used the LedControl library, there are many others out there for scrolling text. One interesting example is Parola  – which is incredibly customisable.

Controlling LED numeric displays with the MAX7219

Using the MAX7219 and the LedControl library you can also drive numeric LED displays – up to eight digits from the one MAX7219. This gives you the ability to make various numeric displays that are clear to read and easy to control. When shopping around for numeric LED displays, make sure you have the common-cathode type.

Connecting numeric displays is quite simple, consider the following schematic which should appear familiar by now:

MAX7219 7-segment schematic

The schematic shows the connections for modules or groups of up to eight digits. Each digit’s A~F and dp (decimal point) anodes connect together to the MAX7219, and each digit’s cathode connects in order as well. The MAX7219 will display each digit in turn by using one cathode at a time. Of course if you want more than eight digits, connect another MAX7219 just as we did with the LED matrices previously.

The required code in the sketch is identical to the LED matrix code, however to display individual digits we use:

where A is the MAX7219 we’re using, B is the digit to use (from a possible 0 to 7), C is the digit to display (0~9… if you use 10~15 it will display A~F respectively) and D is false/true (digit on or off). You can also send basic characters such as a dash “-” with the following:

Now let’s put together an example of eight digits:

and the sketch in action:

Conclusion

We have only scratched the surface of what is possible with the MAX7219 and compatible parts. They’re loads of fun and quite useful as well. And finally a plug for our own store – tronixlabs.com – which along with being Australia’s #1 Adafruit distributor, also offers a growing range and Australia’s best value for supported hobbyist electronics from DFRobot, Freetronics, Seeedstudio and much much more.

visit tronixlabs.com

Posted in arduino, as1107, COM-09622, LED matrix, lesson, max7219, part review, tronixlabs, tronixstuff, tutorial

Kit review – High Accuracy LC Meter

Hello readers

Time for another kit review. Lately one of my goals has been to make life easier and in doing so having some decent test equipment. One challenge of meeting that goal is (naturally) keeping the cost of things down to a reasonable level. Unfortunately my eyesight is not the best so I cannot read small capacitor markings – which makes a capacitance meter necessary. Although I have that function within my multimeter, it is often required to read resistors in the same work session.

Thus the reason for this kit review – the High Precision LC Meter kit. The details were originally published in the May 2008 issue of Australia’s Silicon Chip magazine. The meter specifications are:

  • Capacitance – 0.1pF to over 800 nF with four-digit resolution;
  • Inductance – 10 nH to over 70 mH with four-digit resolution;
  • Accuracy of better than +/- 1% of the reading;
  • Automatic range selection, however only non-polarised capacitors can be measured.

The power drain is quite low,  between 8 (measurement) and 17 milliamps (calibration). Using a fresh 9V alkaline battery you should realise around fifty to sixty hours of continuous use. At this point some of you may be wondering if it is cheaper to purchase an LC meter or make your own. A quick search found the BK Precision 875B LCR meter with the same C range and a worse L range for over twice the price of the kit. Although we don’t have resistance measurement in our kit, if you are building this you already have a multimeter. So not bad value at all. And you can say you built it 🙂

Speaking of building, assembly time was just under two hours, and the kit itself is very well produced. The packaging was the typical retail bag:

retailkitss

The first thing that grabs your attention is the housing. It is a genuine, made in the US Hammond enclosure – and has all the required holes and LCD area punched out, so you don’t need to do any drilling at all:

hammondcasess

The enclosure has nice non-slip rubberised edging (the grey area) and also allows for a 9V battery to be housed securely. The team at Altronics have done a great job in redesigning the kit for this enclosure, much more attractive than the magazine version. The PCB is solder-masked and silk-screened to fine standard:

pcbss2

There are two small boards to cut and file off from the main PCB. We will examine them later in the article. All required parts for completion were included, and it is good to see 1% resistors and an IC socket for the microcontroller:

partsss1

At first I was a little disappointed to not have a backlit LCD module, however considering the meter is to be battery operated (however there is a DC socket for a plugpack) and you wouldn’t really be using this in the dark, a backlight wouldn’t be necessary. Construction was easy enough, the layout on the PCB is well labelled, and plenty of space between pins. Lately I have started using a lead-former, and can highly recommend the use of one:

leadformerss

Assembly was quite simple, just start with the lower profile components:

assemble1ss

 

… then mount the LCD and the larger components:

assemble2ss

… the switches and others – and we’re done:

finishedsolderingss

The only problem at this point was the PCB holes for the selector switch, one hole was around 1mm from where it needed to be. Instead of drilling out the hole, it was easier to just bend up the legs of the switch and keep going:

switchlegsss

At this stage one has to cut out two supports from the enclosure, which can be done easily. Then insert the PCB and solder to the sockets and power (9V battery snap). Initial testing was successful (after adjusting the LCD contrast…

inittestss

If you look at the area of PCB between the battery and the left-hand screw there are eight pins – these are four pairs of inputs used to help calibrate and check operation of the meter. For example, by placing a jumper over a pair you can display the oscillator frequency at various stages:

calibrationss

Furthermore, those links can also be used to fine-tune the meter. For example one can increase or decrease the scaling factor and the settings are then stored in the EEPROM within the microcontroller. However my example seemed ok from the start, so it was time to seal up the enclosure and get testing. Starting with a ceramic capacitor, the lowest value in stock:

3p9pfss

Spot-on. That was a good start, however trying to bend the leads to match the binding posts was somewhat inconvenient, so I cut up some leads and fitted crocodile clips on the end. The meter’s zero button allows you to reset the measurement back to zero after attaching the leads, so stray capacitance can be taken into account.

Next, time to check the measurement with something more accurate, a 1% tolerance silvered-mica 100 picofarad capacitor:

99pfss

Again, the meter came through right on specification. My apologies to those looking for inductor tests – I don’t have any in stock to try out. If you are really curious I could be persuaded to order some in, however as the capacitance measurement has been successful I am confident the inductance measurement would also fall within the meter’s specifications.

As shown earlier, there were two smaller PCBs included:

pcbadaptorsss

The top PCB is a shorting bar used to help zero the inductance reading, and the lower PCB is used to help measure smaller capacitors and also SMD units. A nice finishing touch that adds value to the meter. The only optional extra to consider would be a set of short leads with clips or probes to make measurement physically easier.

When reading this kit review it may appear to be somewhat positive and not critical at all. However it really is a  good instrument, considering the accuracy, price, and enjoyment from doing it yourself. It was interesting, easy to build, and will be very useful now and in the future. So if you are in the market for an LC meter, and don’t mind some work – you should add this kit to your checklist for consideration. It is available from our store – Tronixlabs.com

 

visit tronixlabs.com

… which along with being Australia’s #1 Adafruit distributor, also offers a growing range and Australia’s best value for supported hobbyist electronics from DFRobot, Freetronics, Seeedstudio and much much more.

As always, have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website.

Posted in K2533, kit review, LC meter, test equipment, tronixlabsComments (18)

Tutorial: Arduino and the I2C bus – Part One

This is part one of several tutorials on how to use the I2C bus with Arduino, and chapter twenty of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – A tutorial on the Arduino universe. The first chapter is here, the complete series is detailed here.

[Updated 28/11/2014]

In this first of several tutorials we are going to investigate the I2C data bus, and how we can control devices using it with our Arduino systems. The I2C bus can be a complex interface to master, so I will do my best to simplify it for you. In this article we will learn the necessary theory, and then apply it by controlling a variety of devices. Furthermore it would be in your interest to have an understanding of the binary, binary-coded decimal and hexadecimal number systems.

But first of all, what is it?

I2C is an acronym for “Inter-Integrated Circuit”. In the late 1970s, Philips’ semiconductor division (now NXP) saw the need for simplifying and standardising the data lines that travel between various integrated circuits in their products. Their solution was the I2C bus. This reduced the number of wires to two (SDA – data, and SCL – clock). Here is a nice introductory video from NXP:

Why would we want to use I2C devices?

As there are literally thousands of components that use the I2C interface! And our Arduino boards can control them all. There are many applications, such a real-time clocks, digital potentiometers, temperature sensors, digital compasses, memory chips, FM radio circuits, I/O expanders, LCD controllers, amplifiers, and so on. And you can have more than one on the bus at any time, in fact the maximum number of I2C devices used at any one time is 112.

From a hardware perspective, the wiring is very easy. Those of you with an Arduino Uno or 100% compatible board, you will be using pins A4 for SDA (data) and A5 for SCL (clock):

arduino-uno-i2c-pin

If you are using an Arduino Mega, SDA is pin 20 and SCL is 21, so note that shields with I2C need to be specifically for the Mega. If you have another type of board, check your data sheet or try the Arduino team’s hardware website.  And finally, if you are using a bare DIP ATmega328-PU microcontroller, you will use pins 27 for SDA and 28 for SCL. The bus wiring is simple:

nxpi2cbussmall

If you are only using one I2C device, the pull-up resistors are (normally) not required, as the ATmega328 microcontroller in our Arduino has them built-in.  However if you are running a string of devices, use two 10 kilo ohm resistors. Like anything, some testing on a breadboard or prototype circuit will determine their necessity. Sometimes you may see in a particular device’s data sheet the use of different value pull-up resistors – for example 4.7k ohm. If so, heed that advice. The maximum length of an I2C bus is around one metre, and is a function of the capacitance of the bus. This distance can be extended with the use of a special IC, which we will examine during the next I2C chapter.

Each device can be connected to the bus in any order, and devices can be masters or slaves. In our Arduino situation, the board is the master and the devices on the I2C bus are the slaves. We can write data to a device, or read data from a device. By now you should be thinking “how do we differentiate each device on the bus?”… Each device has a unique address. We use that address in the functions described later on to direct our read or write requests to the correct device. It is possible to use two devices with identical addresses on an I2C bus, but that will be discussed in a later article.

As like most devices, we make use of an Arduino library, in this case <wire.h>. Then use the function Wire.begin(); inside of void setup() and we’re ready to go.

Sending data from our Arduino to the I2C devices requires two things: the unique device address (we need this in hexadecimal) and at least one byte of data to send. For example, the address of the part in example 20.1 (below) is 00101111 (binary) which is 0X2F in hexadecimal. Then we want to set the wiper value, which is a value between 0 and 127, or 0x00 and 0x7F in hexadecimal. So to set the wiper to zero, we would use the following three functions:

This sends the device address down the SDA (data) line of the bus. It travels along the bus, and “notifies” the matching device that it has some data coming…

This sends the byte of data to the device – into the device register (or memory of sorts), which is waiting for it with open arms. Any other devices on the bus will ignore this. Note that you can only perform one I2C operation at a time! Then when we have finished sending data to the device, we “end transmission”. This tells the device that we’re finished, and frees up the I2C bus for the next operation:

Some devices may have more than one register, and require more bytes of data in each transmission. For example, the DS1307 real-time clock IC has eight registers to store timing data, each requiring eight bits of data (one byte):

ds1307registers

However with the DS1307  – the entire lot need to be rewritten every time. So in this case we would use eight wire.send(); functions every time. Each device will interpret the byte of data sent to it, so you need the data sheet for your device to understand how to use it.

Receiving data from an I2C device into our Arduino requires two things: the unique device address (we need this in hexadecimal) and the number of bytes of data to accept from the device. Receiving data at this point is a two stage process. If you review the table above from the DS1307 data sheet, note that there is eight registers, or bytes of data in there. The first thing we need to do is have the I2C device start reading from the first register, which is done by sending a zero to the device:

Now the I2C device will send data from the first register when requested. We now need to ask the device for the data, and how many bytes we want. For example, if a device held three bytes of data, we would ask for three, and store each byte in its own variable (for example, we have three variables of type byte: a, b, and c. The first function to execute is:

Which tells the device to send three bytes of data back to the Arduino. We then immediately follow this with:

We do not need to use Wire.endTransmission() when reading data. Now that the requested data is in their respective variables, you can treat them like any ordinary byte variable. For a more detailed explanation of the I2C bus, read this explanatory document by NXP. Now let’s use our I2C knowledge by controlling a range of devices…

The Microchip MCP4018T digital linear potentiometer. The value of this model is 10 kilo ohms. Inside this tiny, tiny SMD part is a resistor array consisting of 127 elements and a wiper that we control by sending a value of between 0 and 127 (in hexadecimal) down the I2C bus. This is a volatile digital potentiometer, it forgets the wiper position when the power is removed. However naturally there is a compromise with using such a small part, it is only rated for 2.5 milliamps – but used in conjunction with op amps and so on. For more information, please consult the data sheet. As this is an SMD part, for breadboard prototyping purposes it needed to be mounted on a breakout board. Here it is in raw form:

mcp4018raw

Above the IC is a breakout board. Consider that the graph paper is 5mm square! It is the incorrect size, but all I have. However soldering was bearable. Put a drop of solder on one pad of the breakout board, then hold the IC with tweezers in one hand, and reheat the solder with the other hand – then push the IC into place. A few more tiny blobs of solder over the remaining pins, and remove the excess with solder wick. Well … it worked for me:

mcp4018cooked

Our example schematic is as follows:

mcp4018sch

As you can see, the part is simple to use, your signal enters pin 6 and the result of the voltage division is found on pin 5. Please note that this is not a replacement for a typical mechanical potentiometer, we can’t just hook this up as a volume or motor-speed control! Again, please read the data sheet.

Control is very simple, we only need to send one byte of data down, the hexadecimal reference point for the wiper, e.g.:

Here is a quick demonstration that moves the wiper across all points:

 and a video demonstration:


Now we will read some data from an I2C device. Our test subject is the ST Microelectronics CN75 temperature sensor. Again, we have another SMD component, but the CN75 is the next stage larger than the part from example 20.1. Thankfully this makes the soldering process much easier, however still requiring some delicate handiwork:

cn75solder1

First, a small blob of solder, then slide the IC into it. Once that has cooled, you can complete the rest and solder the header pins into the breakout board:

cn75solder2ss

Our example schematic is as follows:

cn75schem

Pins 5, 6 and 7 determine the final three bits of the device address – in this case they are all set to GND, which sets the address to 1001000. This allows you to use multiple sensors on the same bus. Pin 3 is not used for basic temperature use, however it is an output for the thermostat functions, which we will examine in the next chapter.

As a thermometer it can return temperatures down to the nearest half of a degree Celsius. Although that may not be accurate enough, it was designed for automotive and thermostat use. For more details please read the data sheet. The CN75 stores the temperature data in two bytes, let’s call them A and B. So we use

with the second parameter as 2, as we want two bytes of data. Which we then store using the following functions:

where *a and *b are variables of the type byte. And as always, there is a twist to decoding the temperature from these bytes. Here are two example pieces of sample data:

The bits in each byte note particular values… the most significant bit (leftmost) of byte A determines whether it is below or above zero degrees – 1 for below zero. The remaining seven bits are the binary representation of the integer part of the temperature; if it is below zero, we subtract 128 from the value of the whole byte and multiply by -1. The most significant bit of byte B determines the fraction, either zero or half a degree. So as you will see in the following example sketch, there is some decision making done in showCN75data():

And here is the result from the serial monitor:

Now that we know how to read and write data to devices on the I2C bus – here is an example of doing both, with a very popular device – the Maxim DS1307 real-time clock IC. Before moving on, consider reading their good data sheet.

ds1307small

Furthermore, it also has a programmable square-wave generator. Connection and use is quite simple:

ds1307schem

However some external components are required: a 32.768 kHz crystal, a 3V battery for time retention when the power is off, and a 10k ohm pullup resistor is required if using as a square-wave generator, and 10k ohm pull-up resistors on the SCL and SDA lines. You can use the SQW and timing simultaneously. If we have a more detailed look at the register map for the DS1307:

ds1307registers

We see that the first seven registers are for timing data, the eighth is the square-wave control, and then another eight RAM registers. In this chapter we will look at the first eight only. Hopefully you have noticed that various time parameters are represented by less than eight bits of data – the DS1307 uses binary-coded decimal. But don’t panic, we have some functions to do the conversions for us.

However, in general  – remember that each bit in each register can only be zero or one – so how do we represent a register’s contents in hexadecimal? First, we need to find the binary representation, then convert that to hexadecimal. So, using the third register of the DS1307 as an example, and a time of 12:34 pm – we will read from left to right. Bit 7 is unused, so it is 0. Bit 6 determines whether the time kept is 12- or 24-hour time. So we’ll choose 1 for 12-hour time. Bit 5 (when bit 6 is 0) is the AM/PM indicator – choose 1 for PM. Bit 4 represents the left-most digit of the time, that is the 1 in 12:34 pm. So we’ll choose 1. Bits 3 to 0 represent the BCD version of 2 which is 0010.

So to store 12pm as hours we need to write 00110010 as hexadecimal into the hours register – which is 0x32. Reading data from the DS1307 should be easy for you now, reset the register pointed, then request seven bytes of data and receive them into seven variables. The device address is 0x68.  For example:

At which point the time data will need to be converted to decimal numbers, which we will take care of in the example sketch later. Setting the time, or controlling the square-wave output is another long operation – you need to write seven variables to set the time or eight to change the square-wave output. For example, the time:

The decToBcd is a function defined in our example to convert the decimal numbers to BCD suitable for the DS1307.

You can also address each register individually. We will demonstrate doing this with an explanation of how to control the DS1037’s in built square-wave generator:

Here is the SQW output in action – we measure the frequency using my very old Tek CFC-250:

For further DS1307 examples, I will not repeat myself and instead direct you to the list of many tronixstuff articles that make use of the DS1307.

So there you have it – hopefully an easy to understand introduction to the world of the I2C bus and how to control the devices within. Part two of the I2C tutorial has now been published, as well as an article about the NXP SAA1064 LED display driver IC and the Microchip MC23017 16-bit port expander IC.

 

And if you enjoyed this article, or want to introduce someone else to the interesting world of Arduino – check out my book (now in a fourth printing!) “Arduino Workshop”.

visit tronixlabs.com

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our forum – dedicated to the projects and related items on this website.

Posted in arduino, CN75, ds1307, education, I2C, learning electronics, lesson, MCP4018T, microcontrollers, tutorialComments (22)

Review – Maxim MAX7219 LED Display Driver IC

[Updated 16/052013]

[After this article, check out our examination of real and fake MAX7219s]

In this article we are going to examine the Maxim MAX7219 LED display driver IC***. The reason for doing so is to show you how something that used to be quite complex can be made very simple – and that is what all this technology is for, isn’t it?

*** There is another IC from Austria Microsystems – the AS1107, which is drop-in compatible with the MAX7219, and can be cheaper. So shop around!

If you have ever tried to control lots of LEDs, or more than two or three 7-segment displays, or even an LED matrix, you realise that there is quite a lot of work to do on the software and hardware side of things. It usually involves lots of shift registers, switching transistors, and some nifty coding to get everything working. And then your code is too large, so the resulting display scans slow enough to see it flicker, etc.

Not any more! The MAX7219 combined with a great library (well for Arduino anyway) solves all the headaches in no time. After using it for the first time today I was briefly angry for not finding out about it sooner… better late than never. First of all, let’s have a look:

max7219sm

Yes, at first glance you may think that it takes a lot of real estate, but it saves some as well. This chip can completely control 64 individual LEDs, including maintaining equal brightness, and allowing you to adjust the brightness of the LEDs either with hardware or software (or both). It can refresh the LEDs at around 800 Hz, so no more flickering, uneven LED displays. You can even switch the display off for power saving mode, and still send it data while it is off. And another good thing – when powered up, it keeps the LEDs off, so no wacky displays for the first seconds of operation.

For more technical information, here is the data sheet: MAX7219.pdf. Now to put it to work for us – this article will demonstrate using an 8 x 8 LED matrix, as well as 8 digits of 7-segment LED numbers. First of all, let’s examine the hardware side of things. Here is the pinout diagram for the IC:

7219pinouts

At this point I should mention it is designed for common-cathode display systems. One example would be an LED matrix, such as:

Another example is a multi-digit 7-segment LED module – current flows in through the anode pins, and each digit is illuminated only when its cathode is connected to ground. Such as this unit:

4dig7segsmall

It has input pins for each of the eight LED elements, and four cathode pins, one for each digit. We can use two of these displays with the MAX7219 very easily, as you will see below. An example circuit to demonstrate using the matrix is below. Note the lack of resistors and transistors:

matrixschematic2

When using with (for example) an Arduino-type board, you would connect serial data in, clock, and load to three digital pins. The resistor is the hardware control via limiting current to the LEDs. My examples use a 1k0 1/4-watt value. If you are going to experiment with this value, refer to page 10 of the data sheet first. Furthermore, ensure the ground of the MAX7219 is connected to the ground of the microcontroller. The capacitors are used to reduce supply current ripple. And here is the demonstration circuit on the breadboard:

matrixbbsm

In the above photo, the five wires on the left are connected to the Arduino board (5V, GND, load, clock, data). The two wires from the terminal block head to a 5v power supply.

Now it is time to examine the software aspect, or how to control the MAX7219. My knowledge of microcontrollers is currently only Arduino, so we will use that for this review. Thankfully there is an excellent library that has been specifically written for the MAX7219 – the LedControl library. You will need to download and install the library from the LedControl page. If you need guidance on installing a library, please visit here.

The author has done a marvellous job of documenting his library, so I will briefly describe the basic functions you need to get things blinking. Here is a very basic demonstration sketch:

Using the lc.setLed() saves a lot of code, as the chip will hold the display on until it is told otherwise, you don’t need to program in a delay loop. You can just enter X and Y coordinates for the LED to switch on. To switch off the display to save power, use lc.shutdown(0, true); – replace true with false to switch it back on again. The video clip below is more of a detailed demonstration, using the schematic above, and this sketch:

Notice how altering the brightness up and down causes a nice “breathing” affect. However, don’t run that type of thing for too long, the MAX7219 does warm up nicely after about ten minutes of running all LEDs at once at full brightness…

Now it is time to examine how the MAX7219 deals with seven-segment LED display modules. It can handle up to eight digits, so I have two four-digit display modules to use. The anodes will be connected, so they behave as one single eight -digit unit. Here is the schematic:

7segschematic

And here is the demonstration circuit on the breadboard:

7segbbsm

Now to examine the functions to control these displays. Once again, be sure to have the LedControl library as used with the matrix. Here is another simple sketch:

Once again, the use of the LedControl library certainly makes things easier. The difference between setChar() and setDigit is that the former can also write A~F, space, and a few other letters that are legible when used with a 7-segment display. Here is a video of the above sketch in action:

As you can see, driving all those LED digits is now a piece of cake. To think twenty years ago we used to muck about with various 4000-series ICs, decimal to BCD converters and so on. The MAX7219 just does it all. Now that I have learned how to make a nice huge display – there is only one thing to do… make another clock! It uses an Arduino board, and my RTC shield. Here is the sketch: maxclock.pdf, and the clock in action:

Well that’s enough blinkiness for now, I could spend a week making displays with the MAX7219. In all honesty, I can say that it makes life exponentially easier when trying to control more than one LED with a microcontroller. Therefore it really is highly recommended. So have fun!

If you found this article interesting, you would also enjoy the reviews of TM1638 and TM1640 LED display modules.

Have fun and keep checking into tronixstuff.com. Why not follow things on twitterGoogle+, subscribe  for email updates or RSS using the links on the right-hand column, or join our Google Group – dedicated to the projects and related items on this website. Sign up – it’s free, helpful to each other –  and we can all learn something.

Posted in arduino, as1107, COM-09622, lesson, max7219, part review, tutorial


Subscribe via email

Receive notifications of new posts by email.

The Arduino Book

Arduino Workshop

Für unsere deutschen Freunde

Dla naszych polskich przyjaciół ...

Australian Electronics!

Buy and support Silicon Chip - Australia's only Electronics Magazine.

Use of our content…

%d bloggers like this: